• 제목/요약/키워드: The Velocity distributions

검색결과 934건 처리시간 0.031초

Numerical and analytical predictions of nuclear steam generator secondary side flow field during blowdown due to a feedwater line break

  • Jo, Jong Chull;Jeong, Jae-Jun;Moody, Frederick J.
    • Nuclear Engineering and Technology
    • /
    • 제53권3호
    • /
    • pp.1029-1040
    • /
    • 2021
  • For the structural integrity evaluation of pressurized water reactor (PWR) steam generator (SG) tubes subjected to transient hydraulic loading, determination of the tube-to-tube gap velocity and static pressure distributions along the tubes is prerequisite. This paper addresses both computational fluid dynamics (CFD) and analytical approaches for predicting the tube-to-tube gap velocity and static pressure distributions during blowdown following a feedwater line break (FWLB) accident at a PWR SG. First of all, a comparative study on CFD calculations of the transient velocity and pressure distributions in the SG secondary sides for two different models having 30 or no tubes is performed. The result shows that the velocities of sub-cooled water flowing between any adjacent two tubes of a tubed SG model during blowdown can be roughly estimated by applying the specified SG secondary side porosity to those of the no-tubed SG model. Secondly, simplified analytical approximate solutions for the steady two-dimensional SG secondary flow velocity and pressure distributions under a given discharge flowrate are derived using a line sink model. The simplified analytical solutions are validated by comparing them to the CFD calculations.

사각분기 덕트내의 유동특성에 관한 연구 (A Study on the Flow characteristics in dividing Rectangular ducts)

  • 이행남;박길문;이덕구
    • 한국해양공학회:학술대회논문집
    • /
    • 한국해양공학회 2001년도 춘계학술대회 논문집
    • /
    • pp.270-275
    • /
    • 2001
  • The characteristics of flow in dividing regions are precise, therefore their classification is very important not only in industry but also in hydrodynamics. By now, many studies of flow in dividing regions have been peformed, but flow characteristics that use visualization In dividing regions have not been studied. The present study of the PIV and the CFD exhibit average velocity distributions, kinetic energy distributions and total pressure distributions etc of the total flow field due to the development of the accurate visualization optical laser and of optical equipment. Also, PIV is accurate with the flows characteristics of the dividing region as continuous analysis is done using input equipment. The study analyzes velocity vector field, turbulence kinetic energy, turbulence viscosity of dividing regions with flow for visualization of the PIV and the CFD measurement in a dividing rectangular ducts.

  • PDF

흡기관내 와류생성기가 압축착화엔진의 수분 농도 분포 및 연소성능 향상에 미치는 영향 (Effect of Vortex Generator in Intake Pipe on the Moisture Concentration Distributions and Combustion Performance in a CI Engine)

  • 정석훈;서현규
    • 한국분무공학회지
    • /
    • 제23권4호
    • /
    • pp.169-174
    • /
    • 2018
  • In this work, optimization of blade shape for the improvement of mixture formation and vortex of intake port was performed by numerically, and the combustion performance of CI engine with optimized blade shape was investigated. To achieve this, 3 types of blade shape were studied under the different air flow mass conditions and the numerical results were investigated in terms of humidification water, moisture concentration, and velocity distributions. Evaporated liquid mass was also compared under various test conditions to reveal the turbulent intensity in an intake port. It was observed that the optimized blade shape can improve the humidification water, moisture concentration, and velocity distributions of intake port inside. The evaporated liquid mass was also increased under the conditions with blade. Especially, low NOx emissions was observed with optimized blade condition.

90$^{\circ}$분기덕트에서 분기부의 내 .외벽의 속도분포 (The Velocity distributions of Dividing Region to Internal Wall and External Wall in 90$^{\circ}$ Dividing Duct)

  • 이행남;박길문;손현철;이덕구;이종구;김대욱
    • 한국마린엔지니어링학회:학술대회논문집
    • /
    • 한국마린엔지니어링학회 2002년도 춘계학술대회논문집
    • /
    • pp.35-39
    • /
    • 2002
  • The flow characteristics in a bifurcated duct are investigated experimentally. Physical properties such as mean velocity vectors, mean vorticity and total pressure distributions are obtained for three different Reynolds numbers(578, 620, 688) using PIV measurements and CFD analysis. Also, dividing duct $90^{\circ}$ were selected for study. The results of this study would be useful to the engineer in designing the flow systems for heating, ventilation, air conditioning and wastewater purification plants.

  • PDF

PIV기법을 이용한 분기 사각덕트네의 유동특성에 관한 실험적 연구 (An Experimental Study on the Flew Characteristics in Dividing Rectangular Duet by using a PIV Technique)

  • 이행남;박길문;이덕구
    • Journal of Advanced Marine Engineering and Technology
    • /
    • 제25권6호
    • /
    • pp.1195-1202
    • /
    • 2001
  • The flow characteristics in a bifurcated duct are investigated experimentally. Physical properties such as mean velocity vectors, mean x-y stress distributions, mean vorticity and total pressure distributions are Obtained for three different Reynolds numbers(578, 620, 688) Using PIV measurements and CFD analysis. Also, three different rates of discharge Q=26.11 l/min, Q=28.11 $\ell$/min, Q=31.17 $\ell$/min) were selected foy experimental conditions. The results of this study would be useful to the engineer in designing the flow systems for heating, ventilation, air conditioning and wastewater purification plants.

  • PDF

Experimental Study on Two-Phase Flow Parameters of Subcoolet Boiling in Inclined Annulus

  • Lee, Tae-Ho;Kim, Moon-Oh;Park, Goon-Cherl
    • Nuclear Engineering and Technology
    • /
    • 제31권1호
    • /
    • pp.29-48
    • /
    • 1999
  • Local two-phase flow parameters of subcooled flow boiling in inclined annulus were measured to investigate the effect of inclination on the internal flow structure. Two-conductivity probe technique was applied to measure local gas phasic parameters, including void fraction, vapor bubble frequency, chord length, vapor bubble velocity and interfacial area concentration. Local liquid velocity was measured by Pilot tube. Experiments were conducted for three angles of inclination; 0$^{\circ}$(vertical), 30$^{\circ}$, 60$^{\circ}$. The system pressure was maintained at atmospheric pressure. The range of average void fraction was up to 10% and the average liquid superficial velocities were less than 1.3 m/sec. The results of experiments showed that the distributions of two-phase How parameters were influenced by the angle of channel inclination. Especially, the void fraction and chord length distributions were strongly affected by the increase of inclination angle, and flow pattern transition to slug flow was observed depending on the How conditions. The profiles of vapor velocity, liquid velocity and interfacial area concentration were found to be affected by the non-symmetric bubble size distribution in inclined channel. Using the measured distributions of local phasic parameters, an analysis for predicting average void fraction was performed based on the drift flux model and flowing volumetric concentration. And it was demonstrated that the average void fraction can be more appropriately presented in terms of flowing volumetric concentration.

  • PDF

원심형 보조날개를 부착한 축류홴의 유동특성에 관한 실험적 연구 (An Experimental Study on the Flow Characteristics of Axial Flow Fan with Centrifugal Sub-Blade)

  • 이석종;성재용;이명호
    • 한국지열·수열에너지학회논문집
    • /
    • 제9권3호
    • /
    • pp.19-25
    • /
    • 2013
  • A new type axial flow fan with centrifugal sub-blades has been designed and fabricated in the present study. We investigated velocity and pressure distributions in downstream flow fields of the fan experimentally to detect the detailed flow characteristics of new axial flow fan and an existing axial flow fan. Two-dimensional velocity components were probed by applying a particle image velocimetry system and pressure distributions were measured by Pitot tube and micro-manometer. Our results show that the velocity and pressure distributions at the flow fields of the new fan are quite different from the existing fan, and that the centrifugal sub-blades in the new fan can improve the performance characteristics in view of kinetic energy.

Red Blood Cell Velocity Field in Rat Mesenteric Arterioles Using Micro PIV Technique

  • Sugii, Y;Nishio, S;Okamoto, K;Nakano, A;Minamiyama, M;Niimi, H
    • International Journal of Vascular Biomedical Engineering
    • /
    • 제1권1호
    • /
    • pp.24-31
    • /
    • 2003
  • As endothelial cells are subject to flow shear stress, it is important to determine the detailed velocity distribution in microvessels in the study of mechanical interactions between blood and endothelium. This paper describes a velocity field of the arteriole in the rat mesentery using an intravital microscope and high-speed digital video system obtained by a highly accurate PIV technique. Red blood cells (RBCs) velocity distributions with spatial resolutions of $0.8{\times}0.8{\mu}m$ were obtained even near the wall in the center plane of the arteriole. By making ensemble-averaged time-series of velocity distributions, velocity profiles over different cross-sections were calculated for comparison. The shear rate at the vascular wall also evaluated on the basis of the ensemble-averaged profiles. It was shown that the velocity profiles were blunt in the center region of the vessel cross-section while they were steep in the near wall region. The wall shear rates were significantly small, compared with those estimated from the Poiseuille profiles.

  • PDF

등속조인트 하우징의 냉간단조 공정설계 (Process Sequence Design in Cold Forging of Constant Velocity Joint Housing)

  • 이진희;강범수;김병민
    • 대한기계학회논문집
    • /
    • 제18권9호
    • /
    • pp.2234-2244
    • /
    • 1994
  • A process sequence of multi-operation cold forging for actual application in industry is designed with the rigid-plastic finite element method to form a constant velocity joint housing(CVJ housing). The material flow during the CVJ housing forming is axisymmetric until the final forging process for forming of ball grooves. This study treats the deformation as an axisymmetric case. The main objective of the process sequence design is to obtain preforms which satisfy the design criteria of near-net-shape product requiring less machining after forming. The process sequence design also investigates velocity distributions, effective strain distributions and forging loads, which are useful information in the real process design.

3차원 방열기 모델을 이용한 엔진냉각 해석 (An Analysis of Engine Cooling using a Three-dimensional Radiator Model)

  • 이영림
    • 한국자동차공학회논문집
    • /
    • 제9권4호
    • /
    • pp.10-17
    • /
    • 2001
  • The performance of a radiator is generally determined using a wind tunnel, in which the air velocity is uniform. However, when it is installed in a car, the distribution of the air velocity becomes nonuniform due to front-end openings, cross members, and horns etc., resulting in lower performance. In this study, several underhood flow simulations have been first performed to get flow rates and velocity distributions over the radiator. Secondly heat release rates are calculated by both a performance curve and a radiator model. Finally, using an engine cooling system simulator, radiator-top-tank temperature is predicted and the variations of heat release rate and radiator-top-tank temperature with nonuniformity of air velocity distributions are analyzed. The results show that the current engine cooling model successfully accounts for the nonuniformity effects that should be considered for higher accuracy in predicting engine cooling performance.

  • PDF