• Title/Summary/Keyword: The Reliability

Search Result 26,685, Processing Time 0.048 seconds

Reliability Estimation of Series-Parallel Systems Using Component Failure Data (부품의 고장자료를 이용하여 직병렬 시스템의 신뢰도를 추정하는 방법)

  • Kim, Kyung-Mee O.
    • IE interfaces
    • /
    • v.22 no.3
    • /
    • pp.214-222
    • /
    • 2009
  • In the early design stage, system reliability must be estimated from life testing data at the component level. Previously, a point estimate of system reliability was obtained from the unbiased estimate of the component reliability after assuming that the number of failed components for a given time followed a binomial distribution. For deriving the confidence interval of system reliability, either the lognormal distribution or the normal approximation of the binomial distribution was assumed for the estimator of system reliability. In this paper, a new estimator is used for the component level reliability, which is biased but has a smaller mean square error than the previous one. We propose to use the beta distribution rather than the lognormal or approximated normal distribution for developing the confidence interval of the system reliability. A numerical example based on Monte Carlo simulation illustrates advantages of the proposed approach over the previous approach.

Integrating Machine Reliability and Preventive Maintenance Planning in Manufacturing Cell Design

  • Das, Kanchan;Lashkari, R.S.;Sengupta, S.
    • Industrial Engineering and Management Systems
    • /
    • v.7 no.2
    • /
    • pp.113-125
    • /
    • 2008
  • This paper presents a model for designing cellular manufacturing systems (CMS) by integrating system cost, machine reliability, and preventive maintenance (PM) planning. In a CMS, a part is processed using alternative process routes, each consisting of a sequence of visits to machines. Thus, a level of 'system reliability' is associated with the machines along the process route assigned to a part type. Assuming machine reliabilities to follow the Weibull distribution, the model assigns the machines to cells, and selects, for each part type, a process route which maximizes the overall system reliability and minimizes the total costs of manufacturing operations, machine underutilization, and inter-cell material handling. The model also incorporates a reliability based PM plan and an algorithm to implement the plan. The algorithm determines effective PM intervals for the CMS machines based on a group maintenance policy and thus minimizes the maintenance costs subject to acceptable machine reliability thresholds. The model is a large mixed integer linear program, and is solved using LINGO. The results point out that integrating PM in the CMS design improves the overall system reliability markedly, and reduces the total costs significantly.

RELIABILITY-BASED OPTIMIZATION OF AIRFOILS USING A MOMENT METHOD AND PARSEC FUNCTION (모멘트 기법과 PARSEC 함수를 이용한 에어포일 신뢰성 기반 최적설계)

  • Lee, J.;Kang, H.;Kwon, J.;Kwak, B.;Jung, K.
    • Journal of computational fluids engineering
    • /
    • v.17 no.2
    • /
    • pp.28-34
    • /
    • 2012
  • In this study, the reliability-based design optimization of the airfoil was performed. PARSEC function was used to consider the uncertainty of the aerodynamic shape for the reliability-based shape optimization of airfoils. Among various reliability analysis methods, the moment method was used to compute the probability of failure of the aerodynamic performance. The accuracy of the reliability analysis was compared with other methods and it was found that the moment method predicts the probability of failure accurately. Deterministic and reliability-based optimizations were performed for the shape of the airfoil and it was demonstrated that reliability-based optimum assures the aerodynamic performances under uncertainties of the shape of the airfoil.

A Study on the Reliability of Superconducting Fault Current Limiter (초전도한류기의 신뢰도에 관한 연구)

  • Bae, In-Su;Kim, Sung-Yul;Kim, Jin-O
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.25 no.1
    • /
    • pp.101-106
    • /
    • 2011
  • The failure of cooling system in Superconducting Fault Current Limiter(SFCL) increases the impedance of superconducting device, and due to malfunction of inner switches the SFCL opens the distribution system inadvertently when required to do so. In this paper, the ground fault and short circuit fault were classified as active failure and the open circuit fault was passive failure. A reliability model of SFCL considers the passive failure as well as active failure, and in the case study the reliability indices of distribution system are evaluated. It is possible that the reliability evaluation excluded passive failure makes the customers reliability seem so worse than it really was. Therefore, the reliability models of SFCL must include the active failure and passive failure together to evaluate the reliability of distribution system connected SFCL.

Distribution System Reliability Evaluation Considering Protective System (보호시스템을 고려한 배전계통의 신뢰도 평가)

  • Kim, S.H.;Jwa, C.K.;Choi, B.Y.;Choi, S.H.;Kim, J.G.
    • Proceedings of the KIEE Conference
    • /
    • 1997.07c
    • /
    • pp.1003-1005
    • /
    • 1997
  • To evaluate the quality of a system or its ability to perform a required function, it is necessary to quantify the reliability of that system. The reliability techniques are based on the concept of expected failure rate and average-outage-duration method. For each load point, the expected failure rate, average outage duration and average annual outage time are evaluated. This paper deals with the reliability evaluation for distribution system including the protection relay system. In evaluating the reliability, it suggests a method for the analysis of protective system reliability, that provides a probabilistic measure of the success of the protective apparatus to perform its intended function. The analysis shows the dependency of success on the reliability of many components, and the way this reliability may be enhanced by redundancy.

  • PDF

Reliability-based design optimization of structural systems using a hybrid genetic algorithm

  • Abbasnia, Reza;Shayanfar, Mohsenali;Khodam, Ali
    • Structural Engineering and Mechanics
    • /
    • v.52 no.6
    • /
    • pp.1099-1120
    • /
    • 2014
  • In this paper, reliability-based design optimization (RBDO) of structures is addressed. For this purpose, the global search and optimization capabilities of genetic algorithm (GA) are combined with the efficiency and reasonable accuracy of an advanced moment-based finite element reliability method. For performing RBDO, three variants of GA including a real-coded, a binary-coded and an improved binary-coded GA are developed. In these methods, GA performs (finite element) reliability analyses to evaluate reliability constraints. For truss structures which include finite element modeling, reliability constraints are evaluated using finite element reliability analysis. Response sensitivity required for finite element reliability analysis is obtained by direct differentiation method (DDM) rather than finite difference method (FDM). The proposed methods are examined within four standard test examples and real-world design problems. The results illustrate the superiority and efficiency of the improved binary-coded GA. Results also illustrate that DDM significantly reduces the computational cost and improves the efficiency of the optimization procedure.

A methodology for creating a function-centered reliability prediction model (기능 중심의 신뢰성 예측 모델링 방법론)

  • Chung, Yong-ho;Park, Ji-Myoung;Jang, Joong-Soon;Park, Sang-Chul
    • Journal of the Korea Society for Simulation
    • /
    • v.25 no.4
    • /
    • pp.77-84
    • /
    • 2016
  • This paper proposes a methodology for creating a function based reliability prediction model. Although, there are various works for reliability prediction, one of the features of their research is that the research is based on hardware-centered reliability prediction. Reliability is often defined as the probability that a device will perform its intended function, under operating condition, for a specified period of time, there is a profound irony about reliability prediction problem. In this paper, we proposed four-phase modeling procedure for function-centered reliability prediction. The proposed modeling procedure consists of four models; 1) structure block model, 2) function block model, 3) device model, and 4) reliability prediction model. We performed function-centered reliability prediction for electronic ballast using the proposed modeling procedure and MIL-HDBK-217F which is the military handbook for reliability prediction of electronic equipment.

Solar Cell Reliability Data Bank (태양전지 신뢰성 정보은행)

  • So, Wonshoup;Oh, Soo Young
    • Current Photovoltaic Research
    • /
    • v.2 no.3
    • /
    • pp.140-145
    • /
    • 2014
  • The globally used PV qualification tests and reports the pass/fail only. Therefore, the reliability of new PV materials and parts can't be compared quantitatively with the reliability of the PV parts and materials in the market. Global PV materials and parts companies test and compare their materials, parts, and modules using the failure-to-test (FTT). However, it takes a long accelerated stress test (AST) until failure. It also needs to test the new and existing materials and parts. Therefore, it requires excessive equipment time and cost. In order to reduce the time and cost, a new reliability enhancement methodology has been developed. It tests the PV materials, parts, and modules in the global market and stores them in the PV reliability database. It reduces the time and cost of the comparison and enhancement of PV reliability. An example of the reliability enhancement of the PV encapsulant, EVA is presented.

A Study on The Feliability Predication Model of Gyroscope (자이로의 신뢰성 예측모델에 관한 연구)

  • 백순흠;문홍기;김호룡
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1993.10a
    • /
    • pp.475-481
    • /
    • 1993
  • The objective of this study is to develope the reliability prediction model for Float Rated Integrating Gyroscope( :FRIG) at maximum loading. The equation of motion for FRIG is firstly derived to set up the reliability prediction model. To analysis reliability or all parts of the gyro is not easy due to their complicated structure. Therefore the failure parts are chosen by Failure Mode Effective Analysis (:FMEA). F.E.M is utilized to calculate loads for the selseced rotating assembly and pivot / jewel. The technical reliability is calculated by applying reliability design theory with these results and the performance reliability is sought through distribution estimation with error test data. The bulk reliability of gyroscope is sought by applying the two results. The present prediction results are compared with the accumulation time in good agreement.

  • PDF

Assessment of System Reliability and Capacity-Rating of Concrete Box-Girder High-Girder Highway Bridges (R.C 박스거더교의 체계신뢰성해석 및 안전도평가)

  • 조효남;이승재;임종권
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1993.10a
    • /
    • pp.195-200
    • /
    • 1993
  • This paper develops practical and realistic reliability models and methods for the evalusion of system reliability and system reliability-based rating of R.C box-girder bridge superstructures. The precise prediction of reserved carrying capacity of bridge as a system is extremely difficult expecially when the bridges are highly redundant and significantly deteriorated or damaged. This paper proposes a new approach for the evaluation of reserved system carrying capacity of bridges in terms of equivalent system-strength, which may be defined as a bridge system-strength corresponding to the system reliability of the bridge. This can be derived from an inverse process based on the concept of FOSM form of system reliability index. The strength limit state models for R.C box-girder bridges suggested in the paper are based on the basic bending and shear strength. and the system reliability problem of box-girder superstructure is formulated as parallel-series models obtained from the FMA(Failure Mode Approach) based on major failure mechanism or critical failure states of each girder. AFOSM and IST(Importance Sampling Technique) simulation algorithm is used for the reliability analysis of the proposed models.

  • PDF