• 제목/요약/키워드: The Ratio of Soil

검색결과 3,399건 처리시간 0.026초

불포화의 흙-수분 특성곡선 방정식의 개발 (Development of Equation of the Soil-Water Characteristic Curve for an Unsaturated Soil)

  • 송창섭;임성윤;김명환
    • 한국농공학회:학술대회논문집
    • /
    • 한국농공학회 2003년도 학술발표논문집
    • /
    • pp.191-194
    • /
    • 2003
  • The purpose of this paper was to derive soil-water characteristic curve equation for unsaturated soil. To this end, a series of suction measured test was conducted on the selected 4 kinds of soil which is located in Korea, used the modified pressure plate apparatus. From the test results, it was proved that characteristic curve changes according to grain size distribution, size of void and fine grained soil contents. Residual degree of saturation(Sr) was decreased with void ratio and changed with fine grained soil contents, parameter ${\lambda}$ and hr was increased with void ratio. Soil-water characteristic curve equation based on the test result was suggested by void ratio or grain size distribution.

  • PDF

생석탄 혼합토의 다짐성에 관한 연구 (A Study on the Compactibility of Quick-lime Mixed with Soil)

  • 김철규
    • 한국농공학회지
    • /
    • 제12권1호
    • /
    • pp.1883-1886
    • /
    • 1970
  • This study was made to obtain the optium compaction of quicklime mixed with soil and to find out the relation of the quicklime mix ratio, dry density and strength by changing the compaction rounds. The obtained results are as follows. 1. The maximun dry density of unmixed soil in not distinguishable, while that of mixed soil is distinguishable. 2. What the increase of quicklime mix ratio, the dry density and strength increase and the optimum quicklime mix ratio could be obtained. 3. With the increase of compaction rounds, the dry density and strength increase, while they decrease in a certain limit and maximum dry density and strength could be obtained.

  • PDF

연직배수재에 의한 토양오염물질 추출에 미치는 영향인자 분석 - 토양 및 오염유체의 물성치를 중심으로 (Analysis of Effecting Parameters on Extraction of Soil Contaminants using Vertical Drains - Focusing on Soil and Contaminants Physical Properties)

  • 이행우;장병욱;강병윤;김현태
    • 한국농공학회:학술대회논문집
    • /
    • 한국농공학회 2005년도 학술발표논문집
    • /
    • pp.355-360
    • /
    • 2005
  • The properties of contaminants, contaminated soil, and the elapsed time are important factors to in-situ soil remediation. Gabr et. al. (1996) derived the solution equation of contaminant concentration ratio as initial one $(C/C_0)$ with time and spatial changes in contaminated area with vertical drains. The contaminant concentration ratio $(C/C_0)$ is analyzed with time and spatial changes as varying the effective diameter, porosity, shape factor, density of contaminated soil and temperature in ground and unit weight, viscosity of contaminants by using FLUSH1 model. Results from numerical analysis indicate that the most important factor to the in-situ soil remediation using vertical drains is the effective diameter of contaminated soil. It also shows that the viscosity of contaminants, porosity of soil, shape of soil, temperature in ground, unit weight of contaminants are, in order, affected to the soil remediation but density of soil is insignificant to the soil remediation.

  • PDF

산림시업이 잣나무림의 생장, 토양조공극 및 토양함수능에 미치는 영향 (Effects of Forest Practices on the Changes of Characteristics of Forest Stand, Mesopore Ratio and Soil Water Contents in Pinus koraiensis Stands)

  • 전재홍;정용호;최형태;유재윤
    • 한국환경복원기술학회지
    • /
    • 제11권3호
    • /
    • pp.20-27
    • /
    • 2008
  • This study was conducted to investigate the influence of thinning and pruning on characteristics of forest stand, mesopore ratio and soil water content at the Pinus koraiensis stands in Gwangneung, Gyeonggido. The Pinus koraiensis had been planted in 1976 and thinning and pruning were carried out in 1996. A sample area survey was conducted at experimental plots (thinned and unthinned) in 1998 and 2005, and mesopore ratio and soil water content have been monitored from 2000 to present. Average tree height of the thinned plot increased from 10.9m to 13.2m and from 10.3m to 12.8m for the unthinned plot. Average D.B.H of the thinned plot increased from 15.9cm to 21.1cm and from 14.5cm to 16.7cm for the unthinned plot during the period 1998-2005. Crown density at the thinned plot increased from 81.5% to 95.0% and from 89.5% to 95.0% for the unthinned plot during the period 1998-2005. Mesopore ratio (pF2.7) of A layer soil at the thinned plot was 40.1% while that of the unthinned plot was 37.3%. Changes of mesopore ratio at unthinned plot were not associated with stand age, but those at thinned plot had increased and then decreased, showing declining of the practice effect. Average soil water content at the thinned plot were 23.7% and 22.4% for the unthinned plot. Soil watercontents at both plots have been increased with increase in stand age. But the difference of soil watercontent at each plot has been decreased, especially at the depth of 10cm.

Assessment of compressibility behavior of organic soil improved by chemical grouting: An experimental and microstructural study

  • Ghareh, Soheil;Kazemian, Sina;Shahin, Mohamed
    • Geomechanics and Engineering
    • /
    • 제21권4호
    • /
    • pp.337-348
    • /
    • 2020
  • Tropical organic soils having more than 65% of organic matters are named "peat". This soil type is extremely soft, unconsolidated, and possesses low shear strength and stiffness. Different conventional and industrial binders (e.g., lime or Portland cement) are used widely for stabilisation of organic soils. However, due to many factors affecting the behaviour of these soils (e.g., high moisture content, fewer mineral particles, and acidic media), the efficiency of the conventional binders is low and/or cost-intensive. This research investigates the impact of different constituents of cement-sodium silicate grout system on the compressibility behaviour of organic soil, including settlement and void ratio. A microstructure analysis is also carried out on treated organic soil using Scanning Electron Micrographs (SEM), Energy Dispersive X-ray spectrometer (EDX), and X-ray Diffraction (XRD). The results indicate that the settlement and void ratio of treated organic soils decrease gradually with the increase of cement and kaolinite contents, as well as sodium silicate until an optimum value of 2.5% of the wet soil weight. The microstructure analysis also demonstrates that with the increase of cement, kaolinite and sodium silicate, the void ratio and porosity of treated soil particles decrease, leading to an increase in the soil density by the hydration, pozzolanic, and polymerisation processes. This research contributes an extra useful knowledge to the stabilisation of organic soils and upgrading such problematic soils closer to the non-problematic soils for geotechnical applications such as deep mixing.

Desorption Kinetics and Removal Characteristics of Pb-Contaminated Soil by the Soil Washing Method: Mixing Ratios and Particle Sizes

  • Lee, Yun-Hee;Oa, Seong-Wook
    • Environmental Engineering Research
    • /
    • 제17권3호
    • /
    • pp.145-150
    • /
    • 2012
  • Pb-contaminated soil at a clay shooting range was analyzed by the sequential extraction method to identify metal binding properties in terms of detrital and non-detrital forms of the soil. Most of the metals in the soils existed as non-detrital forms, exchangeable and carbonate-bound forms, which could be easily released from the soil by a washing method. Therefore, the characteristics of Pb desorption for remediation of the Pb-contaminated soil were evaluated using hydrochloric acid (HCl) by a washing method. Batch experiments were performed to identify the factors influencing extraction efficiency. The effects of the solid to liquid (S/L) ratio (1:2, 1:3, and 1:4), soil particle size, and extraction time on the removal capacity of Pb by HCl were evaluated. Soil samples were collected from two different areas: a slope area (SA) and a land area (LA) at the field. As results, the optimal conditions at 2.8 to 0.075 mm of particle size were 1:3 of the S/L ratio and 10 min of extraction time for SA, and 1:4 of the S/L ratio and 5 min of extraction time for LA. The characteristics of Pb desorption were adequately described by two-reaction kinetic models.

SPT 동적신호를 이용한 지반정보 추정에 관한 해석적 연구 (Analytical Studies for Estimating Soil Properties from the SPT Dynamic Signals)

  • 이병식;김영수;김범상
    • 한국지반공학회:학술대회논문집
    • /
    • 한국지반공학회 2002년도 봄 학술발표회 논문집
    • /
    • pp.423-430
    • /
    • 2002
  • A feasibility of a trial test method was evaluated analytically, in which the elastic modulus of a soil deposit was tried to estimate by analyzing dynamic signals measured during conducting the SPT. If there existed a reliable relationship between the impedance ratio of a rod to a soil and the amplitude ratio of a reflected to an incident wave signal at the tip of steel rod contacting the soil surface, it was expected that one could determine the impedance of soil, and then roughly estimate the elastic modulus from the impedance. For a simple rod-soil system, the existence of the relevant relationship was verified in this study by analyzing computed wave signals propagating up and down through the rod. On the basis of these results, thus, a potential of the test method to practical applications could be seen. However, apparent theoretical shortcomings possessed in this approach were also realized since the soil part had an unconfined contact area where contacted with the rod. Therefore, it was concluded that further studies needed to be conducted, in which the reliable theoretical relationship between the impedance and the amplitude ratio as well as the effective contacting soil area contributing to wave reflection should be justified.

  • PDF

석회 및 연탄회 안정처리토의 압밀특성에 관한 연구 (Studies on the Consolidation Characteristics of Marine Clay Stabilized with Lime and Briquette Ash)

  • 김재영;유병옥;주재우
    • 한국농공학회지
    • /
    • 제34권4호
    • /
    • pp.48-58
    • /
    • 1992
  • This study was conducted to investigate the consolidation characteristics of the marine clay, treated with predetermined ratios of lime and briquette ash. The standard consolidation test was performed for the sample of mixture remoulded under the condition of optimum moisture content. The results obtained were as follows ; 1.The increase of the consolidation coefficient due to load increament was larger in the lime treated soil and briquette ash treated soil than in the untreated soil. The decrease of the compression index due to admixing ratio of additives was smaller in the former than in the latter. 2.The increase of the secondary consolidation coefficient of the untreated soil due to load increment was minimal, while that of lime treated soil and the lime-briquette ash treated soil was conspicuous and that of briquette ash treated soil was slight. 3.The $C\alpha$/Cc relationship of untreated soil was represented by colsely distributed points. That of briquette ash treated soil, lime treated soil and the lime-briquette ash treated soil was represented by linear distribution. The $C\alpha$/Cc values of untreated soil, briquette ash treated soil and lime treated soil were approximately 0.049, 0.044 and 0.031, respectively. 4.The maximum consolidation coefficient was obtained with lime and briquette ash (lime : briquette .h 2 :1) mixture ratio of 15%. And the minimum secondary consolidation coefficient, compression index was obtained with same mixture ratio. The required quantity of lime could be reduced and the consolidation was accelerated by applying the above mixture ratio.

  • PDF

삽목에 의한 갯버들 근계의 토양전단강도 보강효과 (The Effect of Reinforcing Soil Shear Strength by a Root System Developed from Direct Sticking of Salix gracilistyla Miq)

  • 이춘석;임승빈
    • 한국조경학회지
    • /
    • 제31권5호
    • /
    • pp.1-10
    • /
    • 2003
  • The purpose of this study was to verify the shore margin protection effect of a root system developed from direct sticking of Salix gracilistyla Miq., focusing on the reinforcement of soil shear strength. The materials were 20cm long sticks whose average diameter and weight were 7.52mm and 14.58g respectively, and sandy loam(Sand 60.36%, Silt 28%, Clay 11.64%), whose maximum dry weight(${\gamma}$$_{dmax}$) was 1.59gf/㎤ at the water ratio( $W_{opt}$) 13.8%. The direct shearing test(KS F 2343) was applied to cylindric columms(diameter 132mm) of pure soil and two years old root reinforced soil. At each condition of vertical stress, 10N/$ extrm{cm}^2$, 14.41N/$\textrm{cm}^2$ and 18.82 N/$\textrm{cm}^2$, five soil+root columns were sheared. After shear tests, the root area ratio and soil moisture on the shear plane were measured. The results of this research were as follows: 1. The average of root area ratio was 1.86% and the soil moisture 14.67%. 2. Two years old root system was found to increase the soil shear strength of pure soil in terms of Cohesion(C) and Inner friction Angle($\phi$) as follows. 3. The relationship between root area ratio and the increased shear strength can be presented with the following equation, $\Delta$S ≒ 0.33ㆍ TrㆍAs/A $\Delta$S : Increased Shear Strength Tr : Average Tension Strength of Root, Ar/A : Root Area Ratioioage Tension Strength of Root, Ar/A : Root Area Ratio

Factors affecting hydraulic anisotropy of soil

  • Nurly Gofar;Alfrendo Satyanaga;Gerarldo D. Aventian;Gulnur Pernebekova;Zhanat Argimbayeva;Sung-Woo Moon;Jong Kim
    • Geomechanics and Engineering
    • /
    • 제36권4호
    • /
    • pp.343-353
    • /
    • 2024
  • The hydraulic anisotropic behavior of unsaturated soil has not been fully explored in relation to the grain-size distribution. The present study conducted laboratory assessments to examine the hydraulic anisotropy condition of statically compacted specimens in various initial states. The investigation incorporated the concept of hydraulic anisotropy by employing two discrete forms of soil stratification: horizontal-layering (HL) and vertical-layering (VL). The examined soils comprised sandy silt and silty sand, exhibiting either unimodal or bimodal soil-water characteristic curve (SWCC). This study aimed to investigate the potential correlation between the hydraulic anisotropy ratio and soil properties. The present study established a correlation between the hydraulic anisotropy ratio and several soil parameters, including fine content, dry density, plastic limit, and liquid limit. The study results indicate a non-linear relationship between the percentage of fine and dry density in soils with unimodal and bimodal soil-water characteristic curve (SWCC) and hydraulic anisotropy ratio.