• 제목/요약/키워드: The Mean-VaR Framework

검색결과 3건 처리시간 0.02초

평균-VaR 기준과 최적 포트폴리오 선택 (The Mean-VaR Framework and the Optimal Portfolio Choice)

  • 구본일;엄영호;추연욱
    • 재무관리연구
    • /
    • 제26권1호
    • /
    • pp.165-188
    • /
    • 2009
  • 본 연구는 개별 자산의 수익률 분포에 대한 가정 없이 평균-VaR 기준에서의 프론티어 포트폴리오를 구하고, 수익률 분포의 고차 적률에 대한 투자자의 선호가 반영된 최적 포트폴리오를 선택하는 방법을 제시하였다. 프론티어 포트폴리오를 구하기 위해 수익률 분포에 대한 가정이 필요하지 않은 그리드와 랭크 방법을 제시하였고 최적 포트폴리오를 선택하기 위해 수익률 분포의 4차 적률까지 고려된 효용함수를 사용하였다. 제시한 방법론을 실제 자료에 적용해 보기위해 모건 스탠리에서 제공하는 선진국 지수, 개발도상국 지수, KOSPI 지수의 주별 수익률 자료를 사용하였다. 평균-VaR 기준과 평균-분산 기준에서의 프론티어 포트폴리오를 구하고 각 기준에서의 최적 포트폴리오를 선택해 서로 비교하였다. 표준편차의 차이뿐만 아니라 효용함수의 수준과 주별 기대수익률로 표현되는 확실성 등가의 차이를 살펴봄으로써 두 기준 간의 경제적 의미 차이에 대해서도 살펴보았다. 또한 부트스트래핑을 이용한 역사적 시뮬레이션의 방법을 사용해 두 기준 간 발생한 차이가 통계적으로 유의한 지를 본 연구에서 적용한 자료에서는 평균-VaR 기준의 투자자가 평균-분산 기준의 투자자에 비해 더 큰 표준편차를 지닌 최적 포트폴리오를 선택하고 위험 회피도가 큰 투자자일수록 평균-VaR 기준에서의 효용이 크고 확실성 등가도 더 크게 나타나는 경향이 나타났다. 그러나 두 기준 간 발생한 차이가 통계적으로 유의하지 않게 나타나 표준편차의 차이와 경제적인 의미 차이가 크지 않다는 사실을 확인하였다.

  • PDF

하방위험을 이용한 위험자산의 최적배분 (Optimal Portfolio Selection in a Downside Risk Framework)

  • 형남원;한규숙
    • 재무관리연구
    • /
    • 제24권3호
    • /
    • pp.133-152
    • /
    • 2007
  • 손실기피(limited down side risk) 선호를 가진 투자자의 경우 통상적으로 사용하는 위험도의 척도인 분산 혹은 표준편차 대신에 하방 위험성에 더 관심을 가지게 되는데, 이러한 경우 평균-VaR 모형이 평균-분산 모형보다 더 적합한 모형일 수 있다. 이 논문에서는 두 모형을 이용하여 최적자산배분 문제를 실증분석하고 그 결과의 차이를 비교하였다. 수익률의 분포에 정규분포 가정이 아닌 두터운 꼬리(fat tail) 분포 가정을 도입하여 극단적인 위험을 고려한 최적자산배분 문제를 분석을 하였다. 각 이론이나 가정들의 강건성(robustness)을 살펴보기 위하여 역사적 분포를 이용한 분석을 비교 기준으로 하였다. 경험적 혹은 역사적 분포를 이용한 분석을 통해서, 극단적인 위험을 고려하는 손실기피적인 선호체계에서의 최적화 행위는 정규분포의 가정이나 평균-분산 모형이 적절하지 않은 것으로 확인되었다. 일상적인 수준을 능가하는 극단적인 손실 위험성을 고려하기에 적합한 모형은 수익률의 두터운 꼬리를 반영하는 분포 가정에 기초한 평균-VaR 모형인 것으로 나타났다.

  • PDF

GPD 기반의 유전자 알고리즘을 이용한 포트폴리오 최적화 (Finding optimal portfolio based on genetic algorithm with generalized Pareto distribution)

  • 김현돈;김현태
    • Journal of the Korean Data and Information Science Society
    • /
    • 제26권6호
    • /
    • pp.1479-1494
    • /
    • 2015
  • 최적의 포트폴리오를 선택하기 위한 연구는 평균-분산모형을 시작으로 다양하게 진행되어 왔다. 과거에는 위험자산의 확률분포가 정규분포를 따른다고 가정하여, 투자자가 보유한 위험자산의 분산이 최소화되고 기대수익률이 최대가 되도록 포트폴리오를 구성하도록 하였다. 그러나 실제 위험자산의 분포에는 극단적인 사건들이 많이 발생하기 때문에 정규분포보다 훨씬 꼬리부분이 두꺼우며, 또한 왼쪽꼬리와 오른쪽꼬리가 대칭적이지도 않은 것으로 밝혀졌다. 이에 본 논문에서는 위험자산의 확률분포를 극단치 이론에서 널리 사용되는 일반화 파레토분포 (GPD)로 모형화하였고 체계적인 위험의 추정을 위하여 VaR를 이용하는 한편, 최적의 포트폴리오의 탐색을 위해서는 유전자 알고리즘을 사용하였다. 제안 방법의 적정성을 확인하기 위해 국내 증시에서 최적 포트폴리오를 탐색해 보았으며, 그 결과 GPD로 투자자산의 위험을 추정하였을 때 가장 좋은 결과를 얻을 수 있었다.