• Title/Summary/Keyword: The Masses

Search Result 2,181, Processing Time 0.025 seconds

IOTA Simple Rules in Differentiating between Benign and Malignant Adnexal Masses by Non-expert Examiners

  • Tinnangwattana, Dangcheewan;Vichak-ururote, Linlada;Tontivuthikul, Paponrad;Charoenratana, Cholaros;Lerthiranwong, Thitikarn;Tongsong, Theera
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.16 no.9
    • /
    • pp.3835-3838
    • /
    • 2015
  • Objective: To evaluate the diagnostic performance of IOTA simple rules in predicting malignant adnexal tumors by non-expert examiners. Materials and Methods: Five obstetric/gynecologic residents, who had never performed gynecologic ultrasound examination by themselves before, were trained for IOTA simple rules by an experienced examiner. One trained resident performed ultrasound examinations including IOTA simple rules on 100 women, who were scheduled for surgery due to ovarian masses, within 24 hours of surgery. The gold standard diagnosis was based on pathological or operative findings. The five-trained residents performed IOTA simple rules on 30 patients for evaluation of inter-observer variability. Results: A total of 100 patients underwent ultrasound examination for the IOTA simple rules. Of them, IOTA simple rules could be applied in 94 (94%) masses including 71 (71.0%) benign masses and 29 (29.0%) malignant masses. The diagnostic performance of IOTA simple rules showed sensitivity of 89.3% (95%CI, 77.8%; 100.7%), specificity 83.3% (95%CI, 74.3%; 92.3%). Inter-observer variability was analyzed using Cohen's kappa coefficient. Kappa indices of the four pairs of raters are 0.713-0.884 (0.722, 0.827, 0.713, and 0.884). Conclusions: IOTA simple rules have high diagnostic performance in discriminating adnexal masses even when are applied by non-expert sonographers, though a training course may be required. Nevertheless, they should be further tested by a greater number of general practitioners before widely use.

BreastLight Apparatus Performance in Detection of Breast Masses Depends on Mass Size

  • Shiryazdi, Seyed Mostafa;Kargar, Saeed;Taheri-Nasaj, Hossein;Neamatzadeh, Hossein
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.16 no.3
    • /
    • pp.1181-1184
    • /
    • 2015
  • Background: Accurate measurement of breast mass size is fundamental for treatment planning. We evaluated performance of BreastLight apparatus in detection breast of masses with this in mind. Materials and Methods: From July 2011 to September 2013, a total of 500 women referred to mammography unit in Yazd, Iran for screening were recruited to this study. Performance of BreastLight in detection breast masses regard their sizeing, measured with clinical breast examination (CBE), mammography and sonography, was assessed. Sonographic and mammography examinations were performed according to breast density among women in two groups of women younger (n=105) and older (n=395) than 30 years. Size correlations were performed using Spearman rho analysis. Differences between mass size as assessed with the different methods (mammography, sonography, and clinical examination) and the BreastLight detection were analyzed using $X^2$-trend test. Results: Performance of the BreastLight in detection of lesions smaller than or equal to 1 cm assessed by CBE, mammography and sonography was 4.4%,7.7% and 12.5% and for masses larger than 4 cm was 65%, 100% and 57.1%, respectively. The performance of BreastLight in detection was significantly increased with larger masses (p<0.001). Conclusions: We conclude that clinical measurement of breast cancer size is as accurate as that from mammography or ultrasound. Accuracy can be improved by the use of a simple formula of both clinical and mammographic measurements.

A Geochemical Study on Trace Elements of the Onjong Granite in Relation to Mineralization, Pyeonghae Area (평해지역 온정화강암 중 미량원소와 광화작용의 관계에 대한 지화학적 연구)

  • Lee, Jae Yeong;Lee, Jin Gook
    • Economic and Environmental Geology
    • /
    • v.25 no.3
    • /
    • pp.245-258
    • /
    • 1992
  • The variations of certain major and trace elements of the Onjong granite mass was studied on the basis of petrological and geochemical characteristics and compared with those of the Eonyang-Yucheon granite masses in order to investigate the geochemical differences of the granitic rocks in relation to mineralization between Pb-Zn ore district and Pb-Zn-Mo-W ore district in Kyeongsang basin. The Onjong granite mass is classified into granodiorite and monzo-granite, and the Eonyang-Yucheon granite masses into monzo-granite by the Streckeisen's diagram. Between both granite masses there are clear differences in contents of certain major elements and lithophile trace elements. The former have high contents of Ca (2.94%), Mg (1.66%) and Sr (365 ppm), and low contents of K (3.52%), Na (3.51%), Rb (116 ppm), Ba (640 ppm) and Li (18.9 ppm), whereas the latter have high contents of K (4.02%), Na (4.28%), Rb (145 ppm), Ba (695 ppm) and Li (19.3 ppm), and low contents of Ca (1.42%), Mg (0.43%) and Sr (161 ppm). Except for Mo, there are not clear differences in chalcophile trace elements between two granite masses: the Onjong granite mass has higher Mo content (7.1 ppm) lnan that (1.7 ppm) of the Eonyang-Yucheon granite masses, but Pb and Zn contents are similar between the Onjong granite mass (Pb=8.7 ppm, Zn=37.1 ppm) and the Eonyang-Yucheon granite masses (Pb=7.8 ppm, Zn=39.8 ppm). Ca and Sr contents of the Onjong granite mass (Ca> 1.5%, Sr> 270 ppm) are higher than those of the Eonyang- Yucheon granite masses (Ca<1.5%, Sr<270ppm), and Rb/Sr, Rb-Rb/Sr and K-Rb/Sr ratios are clearly distinguishable between the Onjong granite mass(Rb/Sr<0.51, Rb-Rb/Sr>250 and K-Rb/Sr>5.2) and the Eonyang- Yucheon granite masses (Rb/Sr>0.51, Rb-Rb/Sr<250 and K-Rb/Sr<5.0). Thus, variations of certain major and trace elements and ratios are applicable as geochemical index to distinguish the types of mineralization of the ore districts related to the Cretaceous granitic rocks in the Kyeongsang basin.

  • PDF

Quantitative Thoracic Magnetic Resonance Criteria for the Differentiation of Cysts from Solid Masses in the Anterior Mediastinum

  • Eui Jin Hwang;MunYoung Paek;Soon Ho Yoon;Jihang Kim;Ho Yun Lee;Jin Mo Goo;Hyungjin Kim;Heekyung Kim;Jeanne B. Ackman
    • Korean Journal of Radiology
    • /
    • v.20 no.5
    • /
    • pp.854-861
    • /
    • 2019
  • Objective: To evaluate quantitative magnetic resonance imaging (MRI) parameters for differentiation of cysts from and solid masses in the anterior mediastinum. Materials and Methods: The development dataset included 18 patients from two institutions with pathologically-proven cysts (n = 6) and solid masses (n = 12) in the anterior mediastinum. We measured the maximum diameter, normalized T1 and T2 signal intensity (nT1 and nT2), normalized apparent diffusion coefficient (nADC), and relative enhancement ratio (RER) of each lesion. RERs were obtained by non-rigid registration and subtraction of precontrast and postcontrast T1-weighted images. Differentiation criteria between cysts and solid masses were identified based on receiver operating characteristics analysis. For validation, two separate datasets were utilized: 15 patients with 8 cysts and 7 solid masses from another institution (validation dataset 1); and 11 patients with clinically diagnosed cysts stable for more than two years (validation dataset 2). Sensitivity and specificity were calculated from the validation datasets. Results: nT2, nADC, and RER significantly differed between cysts and solid masses (p = 0.032, 0.013, and < 0.001, respectively). The following criteria differentiated cysts from solid masses: RER < 26.1%; nADC > 0.63; nT2 > 0.39. In validation dataset 1, the sensitivity of the RER, nADC, and nT2 criteria was 87.5%, 100%, and 75.0%, and the specificity was 100%, 40.0%, and 57.4%, respectively. In validation dataset 2, the sensitivity of the RER, nADC, and nT2 criteria was 90.9%, 90.9%, and 72.7%, respectively. Conclusion: Quantitative MRI criteria using nT2, nADC, and particularly RER can assist differentiation of cysts from solid masses in the anterior mediastinum.

The study on the 4-dof friction induced self-oscillation system with friction coefficient of velocity and pressure (속도 압력항의 마찰 기인 4 자유도계 시스템의 자려진동에 대한 연구)

  • Joe, Yong-Goo;Shin, Ki-Hong;Lee, Jung-Yun;Oh, Jae-Eung
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2002.11b
    • /
    • pp.255-261
    • /
    • 2002
  • A four-degree of freedom model is suggested to understand the basic dynamical behaviors of the normal interaction between two masses of the friction induced normal vibration system. The two masses may be considered as the pad and the disk of the brake. The phase space analysis is performed to understand complicated in-plane dynamics of the non-linear model. Attractors in the phase space are examined for various conditions of the parameters. In certain conditions, the attractor becomes a limit cycle showing the stick-slip phenomena. In this paper, on the basis of the in-plane motion not only the existence of the limit cycle but also the size of the limit cycle is examined o demonstrate the non-linear dynamics that leads the unstable state and then the normal vibration is investigated as the state of the in-plane motion For only one case of the system frequency(two masses with same natural frequencies), the propensity of the normal vibration is discussed in detail. The results show an important fact that it may be not effective when too much damping is present in the only one part of the masses.

  • PDF

The effects of damping on the limit cycle of a 2-dof friction induced self-oscillation system (마찰 기인 2 자유도계 시스템의 자려진동에 대한 댐핑의 영향)

  • 조용구;신기흥;오재웅
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2002.05a
    • /
    • pp.89-96
    • /
    • 2002
  • A two-degree of freedom model is suggested to understand the basic dynamical behaviors of the interaction between two masses of the friction induced vibration system. The two masses may be considered as the pad and the disk of the brake, The phase space analysis is performed to understand complicated dynamics of the non-linear model. Attractors in the phase space are examined for various conditions of the parameters of the model especially by emphasizing on the damping parameters. In certain conditions, the attractor becomes a limit cycle showing the stick-slip phenomena. In this paper, not only the existence of the limit cycle but also the size of the limit cycle is examined to demonstrate the non-linear dynamics that leads the unstable state. For the two different cases of the system frequency ((1)two masses with same natural frequencies, (2) with different natural frequencies), the propensity of limit cycle is discussed in detail. The results show an important fact that it may make the system worse when too much damping is present in the only one part of the masses.

  • PDF

The modal characteristics of non-uniform multi-span continuous beam bridges

  • Shi, Lu-Ning;Yan, Wei-Ming;He, Hao-Xiang
    • Structural Engineering and Mechanics
    • /
    • v.52 no.5
    • /
    • pp.997-1017
    • /
    • 2014
  • According to the structure characteristics of the non-uniform beam bridge, a practical model for calculating the vibration equation of the non-uniform beam bridge is given and the application scope of the model includes not only the beam bridge structure but also the non-uniform beam with added masses and elastic supports. Based on the Bernoulli-Euler beam theory, extending the application of the modal perturbation method and establishment of a semi-analytical method for solving the vibration equation of the non-uniform beam with added masses and elastic supports based is able to be made. In the modal subspace of the uniform beam with the elastic supports, the variable coefficient differential equation that describes the dynamic behavior of the non-uniform beam is converted to nonlinear algebraic equations. Extending the application of the modal perturbation method is suitable for solving the vibration equation of the simply supported and continuous non-uniform beam with its arbitrary added masses and elastic supports. The examples, that are analyzed, demonstrate the high precision and fast convergence speed of the method. Further study of the timesaving method for the dynamic characteristics of symmetrical beam and the symmetry of mode shape should be developed. Eventually, the effects of elastic supports and added masses on dynamic characteristics of the three-span non-uniform beam bridge are reported.

The Effects of Damping on the Limit Cycle of a 2-dof Friction Induced Self-oscillation System (마찰 기인 2자유도계 시스템의 자려진동에 대한 댐핑의 영향)

  • 조용구;신기홍;이유엽;오재응
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.12 no.7
    • /
    • pp.502-509
    • /
    • 2002
  • A two-degree of freedom model Is suggested to understand the basic dynamical behaviors of the interaction between two masses of the friction induced vibration system. The two masses may be considered as the pad and the dusk of the brake. The phase space analysis is performed to understand complicated dynamics of the non-linear model. Attractors in the phase space are examined for various conditions of the parameters of the model especially by emphasizing on the damping parameters. In certain conditions, the attractor becomes a limit cycle showing the stick-slip phenomena. In this Paper, not only titre existence of the limit cycle but also the sloe of the limit cycle is examined to demonstrate the non-linear dynamics that leads the unstable state. For the two different cases of the system frequency[(1) Two masses with same natural frequencies, (2) with different natural frequencies] . the propensity of limit cycle Is discussed In detail. The results show an important fact that it may make the system worse when too much damping Is present in the only one part of the masses.

Blow-out pressure of tunnels excavated in Hoek-Brown rock masses

  • Alireza Seghateh Mojtahedi;Meysam Imani;Ahmad Fahimifar
    • Geomechanics and Engineering
    • /
    • v.37 no.4
    • /
    • pp.323-339
    • /
    • 2024
  • If the pressure exerted on the face of a tunnel excavated by TBM exceeds a threshold, it leads to failure of the soil or rock masses ahead of the tunnel face, which results in heaving the ground surface. In the current research, the upper bound method of limit analysis was employed to calculate the blow-out pressure of tunnels excavated in rock masses obeying the Hoek-Brown nonlinear criterion. The results of the proposed method were compared with three-dimensional finite element models, as well as the available methods in the literature. The results show that when σci, mi, and GSI increase, the blow-out pressure increases as well. By doubling the tunnel diameter, the blow-out pressure reduces up to 54.6%. Also, by doubling the height of the tunnel cover and the surcharge pressure exerted on the ground surface above the tunnel, the blow-out pressure increased up to 74.9% and 5.4%, respectively. With 35% increase in the unit weight of the rock mass surrounding the tunnel, the blow-out pressure increases in the range of 14.8% to 19.6%. The results of the present study were provided in simple design graphs that can easily be used in practical applications in order to obtain the blow-out pressure.

A low computational cost method for vibration analysis of rectangular plates subjected to moving sprung masses

  • Nikkhoo, Ali;Asili, Soheil;Sadigh, Shabnam;Hajirasouliha, Iman;Karegar, Hossein
    • Advances in Computational Design
    • /
    • v.4 no.3
    • /
    • pp.307-326
    • /
    • 2019
  • A low computational cost semi-analytical method is developed, based on eigenfunction expansion, to study the vibration of rectangular plates subjected to a series of moving sprung masses, representing a bridge deck under multiple vehicle or train moving loads. The dynamic effects of the suspension system are taken into account by using flexible connections between the moving masses and the base structure. The accuracy of the proposed method in predicting the dynamic response of a rectangular plate subjected to a series of moving sprung masses is demonstrated compared to the conventional rigid moving mass models. It is shown that the proposed method can considerably improve the computational efficiency of the conventional methods by eliminating a large number of time-varying components in the coupled Ordinary Differential Equations (ODEs) matrices. The dynamic behaviour of the system is then investigated by performing a comprehensive parametric study on the Dynamic Amplification Factor (DAF) of the moving loads using different design parameters. The results indicate that ignoring the flexibility of the suspension system in both moving force and moving mass models may lead to substantially underestimated DAF predictions and therefore unsafe design solutions. This highlights the significance of taking into account the stiffness of the suspension system for accurate estimation of the plate maximum dynamic response in practical applications.