• Title/Summary/Keyword: The Korean waters

Search Result 3,834, Processing Time 0.037 seconds

Hydrochemical Properties of the Onyang Hot Spring Waters (온양지역 온천수의 수리화학적 특성)

  • Yun, Uk;Cho, Byong Wook;Lee, Cholwoo
    • The Journal of Engineering Geology
    • /
    • v.26 no.4
    • /
    • pp.561-570
    • /
    • 2016
  • For the investigation of hydrochemical changes in hot spring waters from the Onyang hot spring area, we analyzed water chemistry of 24 hot spring waters in 2011 and 2016. The results showed that there is no significant change in temperature and properties of the hot spring waters. The relationship of 2016 between temperature and $SiO_2$ and F reveals a positive trend ($r^2=0.60$, 0.47), and the relationship between temperature and Ca, Mg, Cl, $SO_4$, $HCO_3$, EC reveals a negative trend ($r^2=0.50$, 0.11, 0.50, 0.63, 0.23, 0.51). The relationship between temperature and pH is a positive trend, while the one between temperature and DO is a negative trend, indicating that the source is from deep groundwater. When plotted on Piper diagram, most of which are $Na-HCO_3$ but several hot waters are classified as the $Na(Ca)-HCO_3$, indicating inflow of shallow groundwater was occurred.

Salinity Effects on the Hydraulic Conductivity of Uplands (밭토양(土壌)의 수리전도도(水理伝導度)에 대(対)한 염류효과(塩類効果))

  • Park, Chang-Seo;O'Connor, George A.
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.16 no.1
    • /
    • pp.7-13
    • /
    • 1983
  • Laboratory determinations of saturated hydraulic conductivity were conducted with four soils varying in texture from sand to clay and with five waters with different salinity level. The waters varied in total dissolved solids from 1,250 to $15,000mg/{\ell}$ and in SAR from 16 to 57 and were representative of saline waters in New Mexico. Saturated hydraulic conductivities of the soils were not significantly affected by water salinity if these waters were the sole source of irrigation water. However, small additions of distilled water, assuming simulated to rain, to soils previously equilibrated with the saline waters significantly decreased soil permeability. Dispersion and short or long-distance transport of clay apparently clogged conducting pores when distilled water was introduced. Swelling was an important mechanism in reducing soil permeability only in the clay soil. The data suggest that, when saline water is the dominant irrigation source and is supplemented by rain, (1) all saline waters could be used on very sandy soils, (2) no saline waters should be used on very heavy soils, and (3) slightly saline, but not very saline, waters could be used on medium-textured soils.

  • PDF

Species composition and community structure of fish by shrimp beam trawl between Sacheon Bay and coastal waters off Namhae, Korea (사천만과 남해연안에서 새우조망에 어획된 어류의 종조성 및 군집구조)

  • SONG, Se Hyun;JEONG, Jae Mook;LEE, Seung Hwan;KIM, Do Hoon
    • Journal of the Korean Society of Fisheries and Ocean Technology
    • /
    • v.55 no.3
    • /
    • pp.217-232
    • /
    • 2019
  • It was turned out by shrimp beam trawl monthly survey from March, 2015 to February, 2016 that different species composition and abundance of the fish assemblages in Sacheon Bay and coastal waters off Namhae, Korea were compared. As a result of monthly measured sea temperature and salinity of Sacheon Bay and coastal waters off Namhae, sea temperature of both areas was changed seasonally; however, differences in sea temperature occurred during certain periods depending on the region. Salinity was generally low in Sacheon Bay affected by fresh water, and both areas was low in summer and high in winter. A total of 73 species representing 37 families were collected in Sacheon Bay. The dominant fish species in terms of numbers and biomass were Liparis tanakae, $23,077inds./km^2$, $332.1kg/km^2$. A total of 91 fish species representing 49 families were collected in coastal waters off Namhae. The dominant fish species in terms of numbers were Leiognathus nuchalis, $139,683inds./km^2$ and biomass were Chelidonichthys spinosus, $1,078.6kg/km^2$. Analysis of dendrogram of the clustering showed that Sacheon Bay and coastal waters off Namhae were distinctive featured (global R = 0.691, p = 0.017). And except of summer season (July-October), there was a distinctive feature seasonally (global R = 0.844, p = 0.001). The fish species that appeared in common in both areas, where fish species caught in Sacheon Bay, an important inner bay,were smaller than those caught in coastal waters off Namhae appeared. It presented that Sacheon Bay plays a more important role in spawning and nursery ground for fisheries resource than coastal waters off Namhae, Korea.

Morphological and genetic characterization and the nationwide distribution of the phototrophic dinoflagellate Scrippsiella lachrymosa in the Korean waters

  • Lee, Sung Yeon;Jeong, Hae Jin;You, Ji Hyun;Kim, So Jin
    • ALGAE
    • /
    • v.33 no.1
    • /
    • pp.21-35
    • /
    • 2018
  • The phototrophic dinoflagellate genus Scrippsiella is known to have a worldwide distribution. Here, we report for the first time, the occurrence of Scrippsiella lachrymosa in Korean waters. Unlike the other stains of S. lachrymosa whose cultures had been established from cysts in the sediments, the clonal culture of the Korean strain of S. lachrymosa was established from motile cells. When the sulcal plates of S. lachrymosa, which have not been fully described to date, were carefully examined using scanning electron microscopy, the Korean strain of S. lachrymosa clearly exhibited the anterior sulcal plate (s.a.), right sulcal plate (s.d.), left sulcal plate (s.s.), median sulcal plate (s.m.), and posterior sulcal plate (s.p.). When properly aligned, the large subunit (LSU) rDNA sequence of the Korean strain of S. lachrymosa was ca. 1% different from those of two Norwegian strains of S. lachrymosa, the only strains for which LSU sequences have been reported. The internal transcribed spacer (ITS) rDNA sequence of the Korean strain of S. lachrymosa was also ca. 1% different from those of the Scottish and Chinese strains and 3% different from those of the Canadian, German, Greek, and Portuguese strains. Thus, the Korean S. lachrymosa strain has unique LSU and ITS sequences. The abundances of S. lachrymosa in the waters of 28 stations, located in the East, West, and South Sea of Korea, were quantified in four seasons from January 2016 to October 2017, using quantitative real-time polymerase chain reaction method and newly designed specific primer-probe sets. Its abundances were >$0.1cells\;mL^{-1}$ at eight stations in January and March 2016 and March 2017, and its highest abundance in Korean waters was $26cells\;mL^{-1}$. Thus, S. lachrymosa has a nationwide distribution in Korean waters as motile cells.

Temporal and Spatial Variation of SST Related to the Path of Typhoons around the Korean Waters in Summer (태풍 통과에 따른 한국 연근해 수온 변동)

  • 서영상;김동순;김복기;이동인;김영섭;김일곤
    • Journal of Environmental Science International
    • /
    • v.11 no.7
    • /
    • pp.627-636
    • /
    • 2002
  • While typhoons were passing by the coastal and offshore waters around the Korean peninsula, the variations of the sea surface temperature (SST) were studied. To study on the variation, the data related to the 22 typhoons among 346 typhoons which occurred in the western Pacific during 1990∼1999, daily measured field SSTs at coastal and offshore, and imageries from advanced very high resolution radiometer on NOAA satellite during 1990∼1999 were used. The average variations of the SSTs were -0.9℃ at coastal waters and -2℃ at offshore around the Korean peninsula while the typhoons were passing by. In very near coastal waters from the land, the SST was not changed because the bottom depth of the coastal waters was shallower than the depth of thermalcline, while the typhoon was passing. The temporal and spatial variation of SSTs at coastal waters in summer were depended on the various types of the typhoons'paths which were passing through the Korean peninsula. When a typhoon passed by the western parts including the Yellow Sea of the Korean peninsula upwelling cold water occurred along the eastern coastal waters of the peninsula. The reason was estimated with the typhoon that was as very strong wind which blew from south toward north direction along the eastern shore of the peninsula, led to the Ekman transport from near the eastern coastal area toward the offshore. While cold water was occurring in the eastern coast, a typhoon passed over the coastal area, the cold water disappeared. The reason was estimated that the cold water was mixed up with the surrounding warm water by the effect of the typhoon. While a cold water was occurring in the eastern coast, a typhoon passed by the offshore of the eastern coast, there were the increasing of the SST as well as the disappearing of the cold water. While a typhoon was passing by the offshore of the eastern coast, the cold water which resulted from the strong tidal current in the western coast of the peninsula was horizontally spread from the onshore to the offshore. We think that the typhoon played the role of the very strong wind which was blowing from north toward south. Therefore, the Ekman transport occurred from the onshore toward the offshore of the western coast in the Korean peninsula.

A study on the forecasting biomass according to the changes in fishing intensity in the Korean waters of the East Sea (한국 동해 생태계의 어획강도 변화에 따른 자원량 예측 연구)

  • LIM, Jung-Hyun;SEO, Young-Il;ZHANG, Chang-Ik
    • Journal of the Korean Society of Fisheries and Ocean Technology
    • /
    • v.54 no.3
    • /
    • pp.217-223
    • /
    • 2018
  • Overfishing capacity has become a global issue due to over-exploitation of fisheries resources, which result from excessive fishing intensity since the 1980s. In the case of Korea, the fishing effort has been quantified and used as an quantified index of fishing intensity. Fisheries resources of coastal fisheries in the Korean waters of the East Sea tend to decrease productivity due to deterioration in the quality of ecosystem, which result from the excessive overfishing activities according to the development of fishing gear and engine performance of vessels. In order to manage sustainable and reasonable fisheries resources, it is important to understand the fluctuation of biomass and predict the future biomass. Therefore, in this study, we forecasted biomass in the Korean waters of the East Sea for the next two decades (2017~2036) according to the changes in fishing intensity using four fishing effort scenarios; $f_{current}$, $f_{PY}$, $0.5{\times}f_{current}$ and $1.5{\times}f_{current}$. For forecasting biomass in the Korean waters of the East Sea, parameters such as exploitable carrying capacity (ECC), intrinsic rate of natural increase (r) and catchability (q) estimated by maximum entropy (ME) model was utilized and logistic function was used. In addition, coefficient of variation (CV) by the Jackknife re-sampling method was used for estimation of coefficient of variation about exploitable carrying capacity ($CV_{ECC}$). As a result, future biomass can be fluctuated below the $B_{PY}$ level when the current level of fishing effort in 2016 maintains. The results of this study are expected to be utilized as useful data to suggest direction of establishment of fisheries resources management plan for sustainable use of fisheries resources in the future.

A study on red tide surveillance system around the Korean coastal waters using GOCI (GOCI를 활용한 한반도 주변해역 적조 감시 체계 연구)

  • Shin, Jisun;Min, Jee-Eun;Ryu, Joo-Hyung
    • Korean Journal of Remote Sensing
    • /
    • v.33 no.2
    • /
    • pp.213-230
    • /
    • 2017
  • The satellite-based red tide detection algorithms have been developed for specific occurrence waters and red tide species. However, it is essential to study the whole occurrence waters and various red tide species for quick and accurate surveillance of red tide around the Korean coastal waters. In thisstudy, the comprehensive analysesinvolve the spectral features of red tide areas and the suitability of the satellite-based red tide detection algorithms used with GOCI in the Korean coastal waters. As a result, the spectral characteristics were changed according to the chlorophyll content of red tide species and the turbidity of the waters where the red tide appeared. In addition, the previous red tide detection algorithm is applied to GOCI, and it is found that there is a limitation to the red tide area extraction as the existing threshold value. To overcome these limitations, red tide species were divided into two groups according to the difference of chlorophyll content and a system for red tide surveillance wassuggested. It is possible to distinguish between red tide and non-red tide area through five steps. As a result of applying to GOCI, the red tide was appropriately extracted from the previous algorithm based on red tide breaking news. If such a red tide surveillance system is used, it will be possible to efficiently monitor red tide by quick and accurate surveillance of the whole occurrence waters around the Korean and various red tide species.

Hydrogeochemistry of shallow groundwaters in western coastal area of Korea : A study on seawater mixing in coastal aquifers (서해 연안지역 천부지하수의 수리지구화학 : 연안 대수층의 해수 혼입에 관한 연구)

  • 박세창;윤성택;채기탁;이상규
    • Journal of Soil and Groundwater Environment
    • /
    • v.7 no.1
    • /
    • pp.63-77
    • /
    • 2002
  • Salinization is an important environmental problem encountered in coastal aquifers. In order to evaluate the salinization problem in the western coastal area of Korea, we have performed a regional hydrochemical study on shallow well groundwaters (N=229) collected within 10 km away from the coastline. The concentrations of analyzed solutes are very wide in range, suggesting that the hydrochemistry is controlled by several processes such as water-rock interaction, seawater mixing, and anthropogenic contamination. Based on the graphical interpretation of cumulative frequency curves for some hydrochemical parameters (esp., $Cl^{-}$ and ${NO_3}^-$), the collected water samples were grouped into two major populations (1) a background population whose chemistry is predominantly affected by water-rock interaction, and (2) an anomalous population which records the potential influences by either seawater mixing or anthropogenic pollution. The threshold values obtained are 34.7 mg/l for $Cl^{-}$ and 37.2 mg/l for ${NO_3}^-$, Using these two constituents, groundwaters were further grouped into four water types as follows (the numbers in parenthesis indicate the percentage of each type water) : (1) type 1 waters (38%) that are relatively poor in $Cl^{-}$ and ${NO_3}^-$, which may represent their relatively little contamination due to seawater mixing and anthropogenic pollution; (2) type 2 waters (21%) which are enriched in $Cl^{-}$, Indicating the considerable influence by seawater mixing; (3) ${NO_3}^-$-rich, type 3 waters (11%) which record significant anthropogenic pollution; and (4) type 4 waters (30%) enriched in both $Cl^{-}$ and ${NO_3}^-$, reflecting the effects of both seawater mixing and anthropogenic contamination. The results of the water type classification correspond well with the grouping on a Piper's diagram. On a Br x $10^4$versus Cl molar ratio diagram, most of type 2 waters are also plotted along or near the seawater mixing line. The discriminant analysis of hydrochemical data also shows that the classification of waters into four types are so realistic to adequately reflect the major process(es) proposed for the hydrochemical evolution of each water type. As a tool for evaluating the degree of seawater mixing, we propose a parameter called 'Seawater Mixing Index (S.M.I.)’ which is based on the concentrations of Na, Mg, Cl, and $SO_4$. All the type 1 and 3 waters have the S.M.I. values smaller than one, while type 2 and type 4 waters mostly have the values greater than 1. In the western coastal area of Korea, more than 21% of shallow groundwaters appear to be more or less affected by salinization process.

Spatio-Temporal Distribution of Euphausiids in Korean Waters in 2016 (2016년 한국 근해 난바다곤쟁이류의 시·공간적 분포)

  • Lee, Bo Ram;Park, Wongyu;Lee, Hae Won;Choi, Jung Hwa;Oh, Taeg Yun;Kim, Doo Nam
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.54 no.4
    • /
    • pp.456-466
    • /
    • 2021
  • The distribution and abundance of euphausiids were investigated in Korean waters in 2016. Euphausiids were sampled with a Bongo net. A CTD (Sea Bird Electronics 9 plus) measured the water temperature and salinity while sampling. Mean water temperature ranged from 4.2-31.0℃. The highest temperatures occur in September and lowest temperatures in February. The mean water salinity ranged from 27.9-34.8 psu, with the highest salinities in March and lowest in September. Euphausiid species in group W consisted of four species. Among the euphausiid species, Euphausia pacifica was the dominant species with peak densities in September. The E. pacifica from group W was distributed in the bottom cold water during summer when a thermocline was formed. Five euphausiid species occurred in group S. E. pacifica and E. nana were the dominant species. In group S, E. nana was located in the warm and saline Tsushima Warm Current, a branch of the influential Kuroshio Current. Five euphausiid species occurred in group E. E. pacifica and T. longipes were the dominant species. In group E, E. pacifica and T. longipes were distributed in the deep and cold waters, these species prefer low water temperatures and perform vertical migration. The distribution of euphausiids in Korean waters were highly influenced by mass water characteristics, such as temperature and salinity.

Temporal and Spatial Characteristics of Chlorophyll α Distributions Related to the Oceanographic Conditions in the Korean Waters (한국근해 해황과 클로로필 α 분포의 시공간적 변동 특성)

  • Oh, Hyun-Ju;Suh, Young-Sang
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.9 no.3
    • /
    • pp.36-45
    • /
    • 2006
  • By analyzing the sea surface temperature (SST), chlorophyll ${\alpha}$, zooplankton and Orview/SeaWiFS satellite data in the Korean Waters from 1999 to 2001, we studied the seasonal and annual variation of chlorophyll ${\alpha}$ concentration and zooplankton biomass. Sea surface temperature was fluctuated with the typical seasonal variation in the waters of temperate zone. Chlorophyll ${\alpha}$ concentration and zooplankton biomass were high in spring and autumn. Year to year fluctuations on annual averaged chlorophyll ${\alpha}$ concentrations in Korean Waters in the spring from 1999 to 2001 were decreased continuously. On the other hand, the estimated chlorophyll ${\alpha}$ concentrations derived from SeaWiFS ocean color data were lower than the measured sea surface chlorophyll a in the Korean Waters.

  • PDF