DOI QR코드

DOI QR Code

A study on red tide surveillance system around the Korean coastal waters using GOCI

GOCI를 활용한 한반도 주변해역 적조 감시 체계 연구

  • Shin, Jisun (Korea Ocean Satellite Center, Korea Institute of Ocean Science & Technology) ;
  • Min, Jee-Eun (Korea Ocean Satellite Center, Korea Institute of Ocean Science & Technology) ;
  • Ryu, Joo-Hyung (Korea Ocean Satellite Center, Korea Institute of Ocean Science & Technology)
  • 신지선 (한국해양과학기술원 해양위성센터) ;
  • 민지은 (한국해양과학기술원 해양위성센터) ;
  • 유주형 (한국해양과학기술원 해양위성센터)
  • Received : 2017.03.27
  • Accepted : 2017.04.21
  • Published : 2017.04.30

Abstract

The satellite-based red tide detection algorithms have been developed for specific occurrence waters and red tide species. However, it is essential to study the whole occurrence waters and various red tide species for quick and accurate surveillance of red tide around the Korean coastal waters. In thisstudy, the comprehensive analysesinvolve the spectral features of red tide areas and the suitability of the satellite-based red tide detection algorithms used with GOCI in the Korean coastal waters. As a result, the spectral characteristics were changed according to the chlorophyll content of red tide species and the turbidity of the waters where the red tide appeared. In addition, the previous red tide detection algorithm is applied to GOCI, and it is found that there is a limitation to the red tide area extraction as the existing threshold value. To overcome these limitations, red tide species were divided into two groups according to the difference of chlorophyll content and a system for red tide surveillance wassuggested. It is possible to distinguish between red tide and non-red tide area through five steps. As a result of applying to GOCI, the red tide was appropriately extracted from the previous algorithm based on red tide breaking news. If such a red tide surveillance system is used, it will be possible to efficiently monitor red tide by quick and accurate surveillance of the whole occurrence waters around the Korean and various red tide species.

위성기반 적조 탐지 알고리즘들은 특정 해역, 적조 종을 중심으로 개발되어 왔다. 하지만 한반도 주변해역의 빠르고 정확한 적조 감시를 위해서는 한반도 주변의 전 발생 해역과 다양한 적조 종을 대상으로 한 연구가 필수적이다. 본 연구에서는 한반도 주변해역을 대상으로 GOCI 영상을 활용하여 적조 영역의 스펙트럼 특성과 위성기반 적조 탐지 알고리즘의 적합성을 분석하였다. 그 결과, 적조 종들의 클로로필 함량과 적조가 출현하는 해역의 탁도에 따라서 스펙트럼 특성이 달라졌다. 또한 기존 적조 탐지 알고리즘을 GOCI 영상에 적용하였으며, 이를 통해 기존 임계값으로는 적조 영역 추출에 한계가 있음을 알 수 있었다. 이를 개선하기 위해 적조 종들을 클로로필 함량의 차이에 따라 두 그룹으로 나누어 적조 감시 체계를 제시하였다. 총 5 단계를 거쳐 적조 영역과 비적조 영역을 구분하였으며, 적조 속보를 기준으로 했을 경우 최종 추출된 적조영역이 기존 알고리즘으로 추출된 영역에 비해 적절한 결과를 나타냈다. 이러한 적조 감시 체계를 활용한다면 한반도 주변의 모든 해역과 다양한 적조 종에 대한 빠르고 정확한 감시로 인해 효율적인 적조 감시가 가능할 것이다.

Keywords

References

  1. Ahn, Y.H. and P. Shanmugam, 2006. Detecting the red tide algal bloom from satellite ocean color observations in optically complex Northeast-Asia Coastal waters, Remote Sensing of Environment, 103: 419-437. https://doi.org/10.1016/j.rse.2006.04.007
  2. Ahn, Y.H., J.E. Moon, W.C. Seo, and H.J. Yoon, 2009. Inherent Optical Properties of Red Tide Algal for Ocean Color Remote Sensing Application, Journal of the Korean Society for Marine Environmental Engineering, 12(1): 47-54 (in Korean with English abstract).
  3. Bidigare, R.R., M.E., Ondrusek, J.H. Morrow, and D.A. Kiefer, 1990. In vivo absorption properties of algal pigments, Ocean Optics X, International Society for Optics and Photonics, pp. 286-298.
  4. Choi, J.Y., 1993. Seasonal variations of suspended matters in the Keum estuary and its adjacent coastal area. Journal of Oceanological Society of Korea, 28(4): 272-280 (in Korean with English abstract).
  5. Choi, J.Y. and Y.A. Park, 1998. Southward Transport of Suspended Sediments during Summer Season in the Coastal Zone off Tae-An Peninsula, West Coast of Korea. Journal of the Korean Society of Oceanography, 3(1): 45-52 (in Korean with English abstract).
  6. Carder, K.L., F.R. Chen, Z.P. Lee, S.K. Hawes, and D. kamykowski, 1999. Semianalytic Moderate Resolution Imaging Spectrometer algorithms for chlorophyll-a and absorption with bio-optical domains based on nitrate-depletion temperatures, Journal of Geophysical Research, 104: 5403-5421. https://doi.org/10.1029/1998JC900082
  7. Ciotti, A.M., M.R. Lewis, and J.J. Cullen, 2002. Assessment of the relationships between dominant cell size in natural phytoplankton communities and spectral shape of the absorption coefficient, limnology and oceanography, 47: 404-417. https://doi.org/10.4319/lo.2002.47.2.0404
  8. Cannizzaro, J.P., K.L. Carder, F.R. Chen, C.A. Heil, and G.A. Vargo, 2008. A novel technique for detection of the toxic dinoflagellate, Karenia brevis, in the gulf of Mexico from remotely sensed ocean color data, Continental Shelf Research, 28(1): 137-158. https://doi.org/10.1016/j.csr.2004.04.007
  9. Choi, J.K., J.E. Min, J.H. Noh, T.H. Han, S. Yoon, Y.J. Park, J.E. Moon, J.H. Ahn, S.M. Ahn, and J.H. Park, 2014. Harmful algal bloom(HAB) in the East Sea Identifeid by the Geostationary ocean Color Imager(GOCI), Remote Sensing of Environment, 39: 295-302.
  10. Gordon, H.R., 1995. Remote sensing of ocean color: A methodology for dealing with broad spectral bands and significant out-of-band response, Applied Optics, 34(36): 8363-8374. https://doi.org/10.1364/AO.34.008363
  11. Hu, C., F.E. Muller-Karger, C. Taylor, K.L. Carder, C. Kelble, E. Johns, and C.A. Heil, 2005. Red tide detection and tracing using MODIS fluorescence data: A regional example in SW Florida coastal waters, Remote Sensing of Environment, 97: 311-321. https://doi.org/10.1016/j.rse.2005.05.013
  12. Korea Ocean Research & Develpment Institute, 1999. Development of red-tide and water turbidity algorithms using ocean color satellite.
  13. Kim, H.G., 2005. Harmful Algal Blooms in the Sea, Dasom Publishing Co., Korea.
  14. Kim, Y.M., Y.G. Byun, Y.I. Kim, and Y.D. Eo, 2009. Detection of Cochlodinium polykrikoides red tide based on two-stage filtering using MODIS data, Desalination, 249: 1171-1179. https://doi.org/10.1016/j.desal.2009.05.009
  15. Kim, Y.S., S.J. Yoo, and Y.B. Son, 2015. A study on optical propertied of harmful algal blooms(HABs) in Korean waters, Proc. of the 2015 Autumn Meeting, p. 60 (in Korean with English abstract).
  16. Lee, N.R., 2007. Inherent Optical Properties of phytoplankton for the application of red tide remote sensing, Pukyong National University.
  17. Lou, X. and C. Hu, 2014. Diurnal changes of a harmful algal blooms in the East China Sea: Observations from GOCI, Remote Sensing of Environment, 140: 562-572. https://doi.org/10.1016/j.rse.2013.09.031
  18. Morel, A., 1988. Optical Modeling of the Upper Ocean in Relation to Its Biogenous Matter Content(Case Ι Waters). Journal of Geophysical Research, 93(C9): 10749-10768. https://doi.org/10.1029/JC093iC09p10749
  19. Min, J.E., J.H., Ryu, and Y.J. Park, 2015. An Analysis of the Relationship between Inherent Optical Properties and Ocean Color Algorithms Around the Korean Waters, Korean Journal of Remote Sensing, 31(5): 473-490 (in Korean with English abstract). https://doi.org/10.7780/kjrs.2015.31.5.11
  20. Nair, A., S. Sathyendranath, T. Platt, J. Morales, V. Stuart, and M.H. Forget, 2008. Remote sensing of phytoplankton functional types, Remote Sensing of Environment, 112(8): 3366-3375. https://doi.org/10.1016/j.rse.2008.01.021
  21. National Fisheries Research & Development Institute(NFRDI), 2015. Harmful Algal Blooms in Korean Coastal Waters in 2015.
  22. Oh, J.K., 1995. Sedimentation processes of the suspended sediments in Yumha channel of the Han River estuary, korea, 16(1): 20-29 (in Korean with English abstract).
  23. Robert D. Vaillancourt, Christopher W. Brown, Robert R. L. Guillard, and William M. Balch, 2004. Light backscattering properties of marine phytoplankton: realtionships to cell size, chemical composition and taxonomy. Journal of Plnkton Research, 26(2): 191-212. https://doi.org/10.1093/plankt/fbh012
  24. Ryu, J.H., H.J. Han, S. Cho, Y.J. Park, and Y.H. Ahn, 2012. Overview of Geostationary Ocean Color Imager(GOCI) and GOCI data Processing System(GDPS), Ocean Science Journal, 47(3): 223-233. https://doi.org/10.1007/s12601-012-0024-4
  25. Stumpf, R.P., M.E. Culver, P.A. Tester, M. Tomlinson, G.J. Kirkpatrick, B.A. Pederson, E. Truby, V. Ransibrahmanakuf, and M. Soracco, 2003. Monitoring Karenia brevis blooms in the Gulf of Mexico using satellite ocean color imagery and other data, Harmful Algae, 2: 147-160. https://doi.org/10.1016/S1568-9883(02)00083-5
  26. Suh, Y.S., L.H. Jang, N.K. Lee, and J. Ishizaka, 2004. Feasibility of red tide detection around Korea waters using satellite remote sensing. Journal of Fisher Science Technology, 7(3): 148-162.
  27. Sasaki, H., A. Tanaka, M. Iwataki, Y. Touke, E. Siswanto, T.C. Knee, and J. Ishizaka, 2008. Optical Properties of Red Tide in Isahaya Bay, Southwestern Japan: Influence of Chlorophyll a Concentration. Journal of Oceanography, 64: 511-523. https://doi.org/10.1007/s10872-008-0043-z
  28. Son, Y.B., Y.H. Kang, and J.H. Ryu, 2012. Monitoring Red Tide in South Sea of Korea(SSK) Using the Geostationary Ocean Color Imager(GOCI), Korean Journal of Remote Sensing, 28(5): 531-548. https://doi.org/10.7780/kjrs.2012.28.5.6
  29. Shang, S., J. Wu, B. Huang, G. Lin, Z. Lee, and J. Liu, 2014. A new approach to discriminate dinoflagellate from diatom blooms from space in the East China Sea. Journal of Geophysical Research, 119(7): 4653-4668. https://doi.org/10.1002/2014jc009876
  30. Tomlinson, M.C., R.P. Stumpf, V. Ransibrahmanakul, E.W. Turby, G.J. Kirkpatrick, B.A. Perderson, A.V. Gabriel, and C.A. Heil, 2004. Evaluation of the use of SeaWiFS imagery for detecting Karenia brevia harmful algal blooms in the eastern Gulf of Mexico, Remote Sensing of Environment, 91: 293-303. https://doi.org/10.1016/j.rse.2004.02.014
  31. Tomlinson, M.C., T.T. Wynne, and R.P. Stumpf, 2009. An evaluation of remote sensing techniques for enhanced detection of the toxic dinoflagellate, Karenia brevis, Remote Sensing Environment, 113: 589-609.
  32. Wynne, T.T., R.P. Stumpf, M.C. Tomlinson, R.A., Warner, P.A. Tester, J. Dybel, and G.L. Fahnenstiel, 2008. Relating spectral shape to cyanobacterial blooms in the laurentian Great Lake, International Journal of Remote Sensing, 29: 3665-3672. https://doi.org/10.1080/01431160802007640
  33. Yoon, H.J., K.W. Nam, H.G. Cho, and H.K. Beun, 2004. Study on monitoring and prediction for the red tide occurrence in the middle coastal area in the South Sea of Korea II. The relationship between the red tide occurrence and the oceanographic factors. Journal of korea Institute of Information and Communication Engineering, 8(4): 938-945 (in Korean with English abstract).

Cited by

  1. 한국의 연안원격탐사 활용 vol.36, pp.2, 2017, https://doi.org/10.7780/kjrs.2020.36.2.2.1
  2. 토픽모델링을 이용한 대한원격탐사학회지의 연구주제 분류 및 연구동향 분석: 자연·환경재해 분야를 중심으로 vol.37, pp.6, 2021, https://doi.org/10.7780/kjrs.2021.37.6.2.9