• 제목/요약/키워드: The Jeju Power System

검색결과 374건 처리시간 0.027초

Analyzing Stability of Jeju Island Power System with Modular Multilevel Converter Based HVDC System

  • Quach, Ngoc-Thinh;Lee, Do Heon;Kim, Ho-Chan;Kim, Eel-Hwan
    • Journal of Electrical Engineering and Technology
    • /
    • 제10권1호
    • /
    • pp.47-55
    • /
    • 2015
  • This paper proposes the installation of a new modular multilevel converter based high-voltage direct current (MMC-HVDC) system to connect between mainland and Jeju island power systems in Korea in 2020. The purpose is to combine with two old line-commutated converters (LCC)-based HVDC system to achieve a stability of the Jeju island power system. The operation of the overall system will be analyzed in three cases: (i) wind speed is variable, (ii) either one of the LCC-HVDC systems is shutdown because of a fault or overhaul, (iii) a short circuit fault occurs at the mainland side. The effectiveness of the proposed control method is confirmed by the simulation results based on a PSCAD/EMTDC simulation program.

HVDC Overhaul 기간 중 제주계통에 연계된 풍력발전의 전력품질 분석 (Power Quality Analysis of Wind Farms interconnected in Jeju System during HVDC Overhaul)

  • 채우규;윤기갑;조성수;정원욱
    • 전기학회논문지
    • /
    • 제57권11호
    • /
    • pp.1946-1953
    • /
    • 2008
  • Power system of Jeju is interconnected to the mainland using HVDC and that is also interconnected to three wind farms. It will be difficult to control of Jeju power system if HVDC is disconnected or HVDC is overhauled under large scale wind farms interconnected. We measured and analysed the power quality of two substation and two wind farms to assess that wind farms have an effect on Jeju system during the HVDC overhaul last May. We concentrated on the power quality like frequency, voltage variation, voltage harmonics, current harmonics, flicker. We can found that the frequency of Jeju system is very unstable during overhaul, so the frequency of Jeju system can be variated easily by wind farm's rapid output power variation. There are some benefits and weak points in power quality between two wind farms because each wind farm is consist of different wind turbines.

풍력발전설비 및 HVDC가 도입된 제주도 계통에 대한 안정도 해석 (Stability Analysis of Jeju Power System with Wind Turbine Generators and HVDC)

  • 김도형;김재언
    • 전기학회논문지
    • /
    • 제57권11호
    • /
    • pp.1897-1904
    • /
    • 2008
  • In this paper, the method for effective stability analysis of Jeju power system in 2011 is proposed. The stability analysis of Jeju power system was carried out by using proposed method In case of Jeju power system with wind turbine generators or without wind turbine generators, including CSC HVDC or VSC HVDC. The steady-state stability is validated by SCR and ESCR, PV curve, QV curve. And the transient stability is analyzed by CCT(Critical Clearing Time). VSC HVDC has more advantages than CSV HVDC on the stability. Also, Jeju power system without wind turbine generators has more advantages than Jeju power system with Wind Turbine Generators on the stability.

제주계통의 STATCOM 상정사고를 고려한 전력품질 해석 (Power Quality Analysis Considering Contingency of STATCOM in Jeju Power Grid)

  • 고지한;김동완;김승현;김호민;김일환
    • 한국태양에너지학회 논문집
    • /
    • 제34권2호
    • /
    • pp.91-97
    • /
    • 2014
  • This paper presents the modeling and contingency analysis of Jeju power system. For the analysis of contingency with simulation, thermal power plants, current source type HVDC systems, wind farms, STATCOMs and Jeju power load are modeled by PSCAD/EMTDC program. And three kinds of simulation are carried out. Firstly, two STATCOMSs are in normal operation. Secondly, one STATCOM is in fault. Lastly, all of STATCOMs are in fault. These comparative studies will be useful for evaluating the effectiveness of STATCOM to stabilize for the Jeju power system.

HESS가 연계된 상명풍력발전단지의 모델링과 해석 (Modeling and Analysis of Sangmyeong Wind Farm with HESS)

  • 신현;김일환
    • 전력전자학회:학술대회논문집
    • /
    • 전력전자학회 2019년도 전력전자학술대회
    • /
    • pp.422-423
    • /
    • 2019
  • In accordance with the Carbon-Free Island by 2030 policy of Jeju Special Self-Governing Province, renewable energy sources are increasing in Jejudo Island. Due to the intermittent output characteristics of wind turbines, one of the renewable energy sources, which can cause unbalanced system conditions between the demand load and the power generation of Jejudo Island. The Korea Power Exchange limits the output of wind turbines for stabilizing the Jeju power system. Therefore, this paper proposes a method to supply a limited output of Sangmyeong Wind Farm in Jeju Power system to Energy Storage System(ESS) and Water Electrolysis Device(WED). The voltage and frequency fluctuation of the Jeju power system is checked accordingly. The simulation results are performed using the PSCAD/EMTDC program.

  • PDF

제주계통 풍력발전단지의 무효전력 특성 분석 (Analysis of Reactive Power Characteristic for Wind Farms in Jeju System)

  • 최영도;박영신;전동훈;윤기갑;박상호
    • 신재생에너지
    • /
    • 제6권2호
    • /
    • pp.19-26
    • /
    • 2010
  • Experiences in wind farm operation are very limited in Korea, and the foundation for setting standards in power system connection is weak. Therefore, connection and operation standards for wind farms in other countries must be reviewed and power system operation criteria need to be established in order to set up connection standards and optimal operation plans according to the Jeju power system. In this study, reactive power control characteristics of a wind farm were analyzed using a wind farm model of the Jeju power system to propose power system connection operation standards for wind generation within the Jeju power system. Also, change in characteristics of the power system for the application of each reactive power control standard was confirmed, and the results were verified through trial tests arm was analyzed.

이벤트 스터디 기법을 이용한 제주 정전의 경제적 파급효과 분석 (Economic Analysis of Jeju Island Power System Outage Using Event Study)

  • 김진아;이재희;이종욱;주성관
    • 전기학회논문지
    • /
    • 제59권1호
    • /
    • pp.46-50
    • /
    • 2010
  • Power system outages can lead to huge economic losses for various industries. Jeju island power system outage in 2006 also caused significant social and economic impacts in Korea. There have been numerous attempts to evaluate the economic costs of power system outages. Power system outages can also have financial impacts on electric power industry. This paper attempts to analyze the economic impacts of the 2006 Jeju island power system outage on the values of the firms in the power industry using event study. Empirical analysis results are presented to show the economic impacts of the 2006 Jeju island outage on the values of the firms in the power industry.

Methodology for Determining of Generator Operation Point for Ensuring Voltage Stability Against Generator Faults in Jeju-Haenam HVDC System

  • Kang, Sang-Gyun;Seo, Sang-Soo;Lee, Byong-Jun;Joo, Joon-Young
    • Journal of Electrical Engineering and Technology
    • /
    • 제5권1호
    • /
    • pp.54-60
    • /
    • 2010
  • This paper presents a new algorithm for determining generator operation point for maintaining stability considering generator faults in Jeju-Haenam HVDC system. As the HVDC system consumes reactive power for the transmission of active power substantially, compensation of reactive power is essential. And the HVDC system is operated on frequency control mode. That is to say, the HVDC system almost manages system frequency. Therefore, we recognized that the Jeju system could be unstable if the reactive power consumed by the HVDC is insufficient when out-of-step occurs with large generators. When the solution of power flow analysis does not converge due to the unstable system phenomenon, we have difficulty in establishing countermeasures as the post-fault information is not available. In this paper, for the purpose of overcoming this difficulty in establishing countermeasures, we introduce the CPF(Continuation Power Flow) algorithm. This paper suggests an algorithm for calculating the output limitation of the generator to maintain the stability in case of generator fault in the Jeju system.

풍력발전기의 출력 안정화를 위한 에너지 저장장치 용량 산정 사례연구 (Analysis on Required Capacity of Energy Storage System to Mitigate Wind Power Fluctuation)

  • 강민혁;채상헌;안진홍;김일환
    • 한국태양에너지학회 논문집
    • /
    • 제37권6호
    • /
    • pp.59-68
    • /
    • 2017
  • In accordance with the policy of local government, the large scale of wind farms have been installed in Jeju power system. However, The intermittent characteristics of wind power output may cause grid voltage and frequency variation, especially in weak power system. One of the solution to solve this problem is installation of Energy storage system (ESS). In this case, the ESS will regulate the active power generated from wind farm to mitigate fluctuation. Actually, the local government of Jeju island constructed ESS connected to Hangwon wind turbine in 2016. From this point, this paper analyzes requirement capacity of ESS to mitigate wind power fluctuation based on measured data from Hangwon wind turbine and ESS. The simulation results will be carried out by Matlab program.

제주지역 풍력발전단지의 BESS 적용효과 분석 (Analyzing effects of the BESS for wind farm in Jeju Island)

  • 이도헌;김일환;김호민;김승현
    • 한국태양에너지학회 논문집
    • /
    • 제34권4호
    • /
    • pp.67-74
    • /
    • 2014
  • The fluctuation of the output power of wind farms will be able to cause the impact on the Jeju power system such as power quality and stability. To settle the matter, many researchers have proposed the use of the BESS(Battery Energy Storage System) in the wind farm. In this paper, The BESS is applied to each wind farms for mitigating the fluctuation of wind power output. The BESS is controlled for smoothing the output of wind farms. Two kinds of simulation will be carried out. First, the simulation results by using PSCAD/EMTDC simulation program are compared to the measured data from the real power grid in Jeju Island. The other is to analyze the output of wind farms when the BESS is applied to the simulation works. The simulation results will demonstrate the effectiveness of using BESS to stabilize for power grid in Jeju Island.