• Title/Summary/Keyword: The Hybrid Model

Search Result 2,529, Processing Time 0.03 seconds

Optimum distribution of steel slit-friction hybrid dampers based on life cycle cost

  • Eldin, Mohamed Nour;Kim, Jaegoo;Kim, Jinkoo
    • Steel and Composite Structures
    • /
    • v.27 no.5
    • /
    • pp.633-646
    • /
    • 2018
  • This study investigated the seismic performance of a hybrid damper composed of a steel slit plate and friction pads, and an optimum retrofit scheme was developed based on life cycle cost. A sample hybrid damper was tested under cyclic loading to confirm its validity as a damping device and to construct its nonlinear analysis model. The effectiveness of the optimum damper distribution schemes was investigated by comparing the seismic fragility and the life cycle costs of the model structure before and after the retrofit. The test results showed that the damper behaved stably throughout the loading history. Numerical analysis results showed that the slit-friction hybrid dampers optimally distributed based on life cycle cost proved to be effective in minimizing the failure probability and the repair cost after earthquakes.

Design Rules of Hybrid Stepping Machine for Free Piston Engine

  • Jeong, Sung-In
    • Journal of Electrical Engineering and Technology
    • /
    • v.12 no.3
    • /
    • pp.1219-1226
    • /
    • 2017
  • This paper presents the hybrid stepping machine for linear oscillating generators. The focus of the work is the suggestion of the improved model through the comparison of proposed models ; new flux concentrating PMs mover of the hybrid stepping generator is proposed based on the symmetrical and non-symmetrical stator cores of the surface mounted PMs mover, and non-slanted PMs and slanted PMs of the flux concentrating PMs mover. It is achieved using equivalent magnetic circuit considering leakage elements. Finally, this study suggests new hybrid stepping structure of linear oscillating generator.

Fuzzy Relation-Based Fuzzy Neural-Networks Using a Hybrid Identification Algorithm

  • Park, Ho-Seung;Oh, Sung-Kwun
    • International Journal of Control, Automation, and Systems
    • /
    • v.1 no.3
    • /
    • pp.289-300
    • /
    • 2003
  • In this paper, we introduce an identification method in Fuzzy Relation-based Fuzzy Neural Networks (FRFNN) through a hybrid identification algorithm. The proposed FRFNN modeling implement system structure and parameter identification in the efficient form of "If...., then... " statements, and exploit the theory of system optimization and fuzzy rules. The FRFNN modeling and identification environment realizes parameter identification through a synergistic usage of genetic optimization and complex search method. The hybrid identification algorithm is carried out by combining both genetic optimization and the improved complex method in order to guarantee both global optimization and local convergence. An aggregate objective function with a weighting factor is introduced to achieve a sound balance between approximation and generalization of the model. The proposed model is experimented with using two nonlinear data. The obtained experimental results reveal that the proposed networks exhibit high accuracy and generalization capabilities in comparison to other models.er models.

Design of Hybrid Mount Using Rubber and Electromagnetic Actuator with Application to Vibration Control (전자기 작동기와 고무를 이용한 하이브리드 마운트의 설계 및 진동제어 응용)

  • Paeng, Yong-Seok;Choi, Seung-Bok
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2006.11a
    • /
    • pp.915-918
    • /
    • 2006
  • This paper presents an active vibration control of a 1-DOF system using a hybrid mount which consists of elastic rubber and electromagnetic actuator. After identifying stiffness, damping properties of the elastic rubber and electromagnetic element, a mechanical model of the hybrid mount is established. The mount model is then incorporated into the 1-DOF system and the governing equation of motion is obtained in a state space. A sliding mode controller is designed in order to actively attenuate the vibration of the system control responses such as acceleration and transmitted force of the 1 -DOF system are presented in time domain.

  • PDF

Control Performance of Hybrid Mount Using Electromagnetic Actuator and PZT Actuator (전자기 작동기와 압전 작동기를 이용한 하이브리드 마운트의 제어성능 평가)

  • Paeng, Yong-Seok;Yook, Ji-Yong;Moon, Seok-Jun;Choi, Seung-Bok
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.17 no.7 s.124
    • /
    • pp.617-623
    • /
    • 2007
  • This paper presents an active vibration control of a dynamic system using hybrid mount which consists of elastic rubber-piezostack actuator and elastic rubber-electromagnetic actuator, respectively. After identifying stiffness, damping properties of the elastic rubber, PZT actuator and electromagnetic element, a mathematical model of the hybrid mount is established. The mount model is then incorporated into the dynamic system and the governing equation of motion is obtained in a state space. A sliding mode controller is designed in order to actively attenuate the vibration of the system. Control responses such as acceleration and transmitted force of the dynamic system are experimentally evaluated and presented in time and frequency domains.

Control Performance of Hybrid Mount Using Electromagnetic Actuator and PZT Actuator (전자기 작동기와 압전 작동기를 이용한 하이브리드 마운트의 제어성능 평가)

  • Paeng, Yong-Seok;Yook, Ji-Yong;Moon, Seok-Jun;Choi, Seung-Bok
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2007.05a
    • /
    • pp.1131-1136
    • /
    • 2007
  • This paper presents an active vibration control of a 1-DOF system using hybrid mount which consists of elastic rubber and PZT(piezostack) actuator and elastic rubber and electromagnetic actuator, respectively After identifying stiffness, damping properties of the elastic rubber, PZT actuator and electromagnetic element, a mathematical model of the hybrid mount is established. The mount model is then incorporated into the 1-DOF system and the governing equation of motion is obtained in a state space. A sliding mode controller is designed in order to actively attenuate the vibration of the system. Control responses such as acceleration and transmitted force of the 1-DOF system are experimentally evaluated and presented in time and frequency domains.

  • PDF

OPTIMAL DESIGN FOR COOLING SYSTEM OF DRIVING UNITS FOR HYBRID VEHICLES (하이브리드 자동차 구동시스템용 냉각 유로 최적화에 관한 연구)

  • Lee, K.H.;Kim, Jae-Won;Ahn, E.Y.
    • Journal of computational fluids engineering
    • /
    • v.14 no.1
    • /
    • pp.62-69
    • /
    • 2009
  • The cooling system for electric devices of hybrid vehicles is examined. The present system is composed of coolant paths, inlet diffuser and heat sinks whose shapes are diamond and circular. In this work, inlet duct and fin arrays are combined in proposed models and examined by numerical calculations. Nusselt number and Reynolds number are considered for heat transfer performance. Main focus lies on the looking for optimal model for the cooling system adopted to compact driving module of a hybrid vehicle. The optimal model shows uniform flow patterns in the inlet diffuser and secondary flows after the fins attached to heat source. It is found that the vortical flows around the heat sinks are effective for heat removal mechanism.

Parameter Identification of an Electro-Hydraulic Servo System Using an Improved Hybrid Neural-Genetic Multimodel Algorithm (개선된 신경망-유전자 다중모델에 의한 전기.유압 서보시스템의 파라미터 식별)

  • 곽동훈;정봉호;이춘태;이진걸
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.20 no.5
    • /
    • pp.196-203
    • /
    • 2003
  • This paper demonstrates that an improved hybrid neural-genetic multimodel parameter estimation algorithm can be applied to the structured system identification of an electro-hydraulic servo system. This algorithm is consists of a recurrent incremental credit assignment (ICRA) neural network and a genetic algorithm, The ICRA neural network evaluates each member of a generation of model and the genetic algorithm produces new generation of model. We manufactured an electro-hydraulic servo system and the improved hybrid neural-genetic multimodel parameter estimation algorithm is applied to the task to find the parameter values, such as mass, damping coefficient, bulk modulus, spring coefficient and disturbance, which minimize total square error.

Development of Comfort Feeling Structure in Indoor Environments Using Hybrid Neuralnetworks (하이브리드 신경망을 이용한 실내(室內) 쾌적감성(快適感性)모형 개발)

  • Jeon, Yong-Ung;Jo, Am
    • Journal of the Ergonomics Society of Korea
    • /
    • v.20 no.2
    • /
    • pp.29-46
    • /
    • 2001
  • This study is about the modeling of comfort feeling structure in indoor environments. To represent the degree of practical comfort feeling level in an environment, we measured elements of human sense and resultant elements of comfort feeling such as coziness, refreshment, and freshness with physical values(temperature, illumination, noise. etc.). The relationships of elements of human sense and elements of comfort feeling were formulated as a fuzzy model. And a hybrid-neural network with three layers were designed where obtained from fuzzy membership function values of the elements of human sense were used as inputs, and given as fuzzy membership function values of resultant elements of comfort feeling were used as outputs. Both kinds of fuzzy membership function values were obtained from physical values. The network was trained by measured data set. The proposed hybrid-neural network were tested and proposed a more realistic model of comfort feeling structure in indoor environments.

  • PDF

LASER ARC HYBRID WELDING

  • Dilthey, Ulrich;Keller, Hanno
    • Proceedings of the KWS Conference
    • /
    • 2002.10a
    • /
    • pp.162-168
    • /
    • 2002
  • Hybrid Welding means the coupling of the energy of two different energy sources in a common process zone. This paper describes prospects in laser-arc-hybrid-welding. Different kinds of lasers ($CO_2$ laser and Nd:YAG laser) and arc processes (TIG, Plasma and GMA) are considered.

  • PDF