• 제목/요약/키워드: The Galaxy

검색결과 1,386건 처리시간 0.034초

Globular clusters with multiple red giant branches as remaining nuclei of primeval dwarf galaxies

  • Lee, Young-Wook;Han, Sang-Il;Joo, Seok-Joo;Lim, Dongwook;Jang, Sohee;Na, Chongsam;Roh, Dong-Goo
    • 천문학회보
    • /
    • 제38권2호
    • /
    • pp.73.2-73.2
    • /
    • 2013
  • In the current ${\Lambda}CDM$ hierarchical merging paradigm, a galaxy like the Milky Way formed by numerous mergers of ancient subsystems. Most of the relics of these building blocks, however, are yet to be discovered or identified. Recent progress in the Milky Way globular cluster research is throwing new light on this perspective. The discoveries of multiple stellar populations having different heavy element abundances in some massive globular clusters are suggesting that they are most likely the remaining cores or relics of disrupted dwarf galaxies. In this talk, we will report our progress in the (1) narrow-band photometry, (2) low-resolution spectroscopy, and (3) population modeling for this growing group of peculiar globular clusters.

  • PDF

Galaxy Group Assembly Histories and the Missing Satellites Problem: A Case for the NGC 4437 Group

  • Kim, Yoo Jung;Lee, Myung Gyoon
    • 천문학회보
    • /
    • 제46권1호
    • /
    • pp.33.1-33.1
    • /
    • 2021
  • The overprediction of the number of satellite galaxies in the LCDM paradigm compared to that of the Milky Way (MW) and M31 (the "missing satellites" problem) has been a long-standing issue. Recently, a large host-to-host scatter of satellite populations has been recognized both from an observational perspective with a larger sample and from a theoretical perspective including baryons, and it is crucial to collect diverse and complete samples with a large survey coverage to investigate underlying factors contributing to the diversity. In this study, we discuss the diversity in terms of galaxy assembly history, using satellite populations of both observed systems and simulated systems from IllustrisTNG. In addition to previously studied satellite systems, we identify satellite candidates from 25deg2 of Hyper Suprime-Cam Subaru Strategic Program (HSC-SSP) Wide layer around NGC 4437, a spiral galaxy of about one-fourth of the MW mass, paired with a ~2 magnitude fainter dwarf spiral galaxy NGC 4592. Using the surface brightness fluctuations (SBF) method, we confirm five dwarf galaxies as members of the NGC 4437 group, resulting in a total of seven members. The group consists of two distinct subgroups, the NGC 4437 subgroup and the NGC 4592 subgroup, which resembles the relationship between the MW and M31. The number of satellites is larger than that of other observed and simulated galaxy groups in the same host stellar mass range. However, the discrepancy decreases if compared with galaxy groups with similar magnitude gaps (V12 ~ 2), defined as the V-band magnitude difference between the two brightest galaxies in the group. Using simulated galaxy groups in IllustrisTNG, we find that groups with smaller V12 have richer satellite systems, host more massive dark matter halos, and have assembled more recently. These results show that the host-to-host scatter of satellite populations can be attributed to the diversity in galaxy assembly history and be probed by V12 to some degree and that NGC 4437 group is likely a recently assembled galaxy group with a large halo mass compared to galaxy groups of similar luminosity.

  • PDF

Newly discovered galaxy overdensities and large scale structures at z~1

  • Hyun, Minhee;Im, Myungshin;Kim, Jae-Woo;Lee, Seong-Kook
    • 천문학회보
    • /
    • 제44권1호
    • /
    • pp.39.2-39.2
    • /
    • 2019
  • Galaxy clusters are the largest gravitationally bound structures in the universe and located in the densest peak of the dark matter. They can constraint cosmologicals model from their dark matter halo distribution and they are good laboratories to study how galaxy evolution varies with their environment. Especially, studies of galaxy clusters at $z{\geq}1$ are important because (i) galaxy evolution at z >1 is still controversial (Elbaz et al. 2007; Faloon et al. 2013) and (ii) some studies show that mass of galaxy clusters at z>1 seems to be higher than expected value from the concordance LCDM cosmological model (Kang & Im 2009; Gonzales et al. 2012). In spite of their significance, there have not been many studies of galaxy clusters at $z{\geq}1$ because of the lack of wide and deep multi-wavelength data. We newly found galaxy cluster candidates at 0.2 < z < 1.4 and a LSS spanning over 100Mpc at z~0.9 in the ELAIS-N1 field which is one of the IMS (Infrared Medium-deep Survey; Im et al. 2019, in preparation) fields. Thanks to K-GMT science program, we performed spectroscopic follow-up observation for a z~1 galaxy cluster candidates with GMOS of Gemini North and for z~0.9 supercluster candidates with Hectospec of MMT in 2018A and confirmed the large scale structures. We present the newly discovered galaxy overdensities from the observation and the analysis result.

  • PDF

Discovery of an elliptical jellyfish galaxy with MUSE

  • Sheen, Yun-Kyeong;Smith, Rory;Jaffe, Yara;Kim, Minjin;Duc, Pierre-Alain;Ree, Chang Hee;Nantais, Julie;Candlish, Graeme;Yi, Sukyoung;Demarco, Ricardo;Treister, Ezequiel
    • 천문학회보
    • /
    • 제42권2호
    • /
    • pp.46.2-46.2
    • /
    • 2017
  • We will present a discovery of an elliptical jellyfish galaxy in Abell 2670 (Sheen et al. 2017, ApJL, 840, L7). Our MUSE IFU spectra revealed a rotating gas disk in the center of the galaxy and long ionised gas tails emanating from the disk. Its one-sided tails and a tadpole-like morphology of star-forming blobs around the galaxy suggested that the galaxy is experiencing strong ram-pressure stripping in the cluster environment. Stellar kinematics with stellar absorption lines in the MUSE spectra demonstrated that the galaxy is an elliptical galaxy without any hint of a stellar disk. Then, the primary question would be the origin of the rich gas component in the elliptical galaxy. A plausible scenario is a wet merger with a gas-rich companion. In order to investigate star formation history of the system (the galaxy and star-forming blobs), we derived star-formation rate and metallicity from the MUSE spectra. Photometric UV-Optica-IR SED fitting was also performed using GALEX, SDSS, 2MASS and WISE data, to estimate dust and gas masses in the system. For a better understanding of star formation history and environmental effect of this galaxy, FIR/sub-mm follow-up observations are proposed.

  • PDF

[발표취소] The Relationship Between Bright Galaxies and Their Faint Companions in Galaxy Clusters

  • Lee, Hye-Ran;Lee, Joon Hyeop;Kim, Minjin;Oh, Seulhee;Ree, Chang Hee;Jeong, Hyunjin;Kyeong, Jaemann;Kim, Sang Chul;Lee, Jong Chul;Ko, Jongwan;Park, Byeong-Gon;Sheen, Yun-Kyeong
    • 천문학회보
    • /
    • 제39권1호
    • /
    • pp.35.2-35.2
    • /
    • 2014
  • Today, it is widely accepted that dense environments tend to accelerate galaxy evolution. However, according to recent studies, the environments where galaxies evolve most considerably are galaxy groups rather than galaxy clusters. In an isolated group, the central host galaxy and its satellites co-evolve and interact with each other; as a result, they tend to have similar properties. Such conformity between host and satellite galaxies are relatively well known in galaxy groups, but it is hardly studied what happens after such galaxy groups merge into a galaxy cluster. Recently, J. H. Lee et al. (2014) have found that the colors of bright galaxies in WHL J085910.0+294957, a galaxy cluster at z = 0.3, show a measurable correlation with the mean colors of faint companions around them, which may be the vestige of infallen groups in the cluster. As a follow-up study, we explore more galaxy clusters, Abell 3659 and Abell 1146 at z ~ 0.1, using deep images obtained from the Magellan (Baade) 6.5-m telescope. Cluster members are selected based on the distributions of color, size and concentration along magnitude and spatial distribution. We investigate the dependence of the mean colors of faint companion galaxies on local environments and the properties of adjacent bright galaxies. After comparing the results with those in J. H. Lee et al. (2014), we discuss the origin of the relationships between bright galaxies and their faint companions based on their dependence on cluster properties.

  • PDF

Rotation of galaxies and the role of galaxy mergers

  • Choi, Hoseung;Yi, Sukyoung
    • 천문학회보
    • /
    • 제41권1호
    • /
    • pp.40.1-40.1
    • /
    • 2016
  • Recent integral-field spectrograph surveys have found that similar-looking early type galaxies have wide range of rotational properties (Emsellem et al. 2007). This finding initiated a new point of view to the galaxies; rotation of galaxy as the first parameter of galaxy classification (Emsellem et al. 2011, Cappellari et al. 2011, for example). Some theoretical studies tried to address the origin of galaxy rotation. Idealized galaxy merger simulations have shown that galaxy-galaxy interactions have significant effects on the rotation of galaxies. Cosmological simulations by Naab et al. 2014 also added some more insights to the rotation of galaxies. However, previous studies either lack cosmological background or have not enough number of samples. Running a set of cosmological hydrodynamic zoom-in simulations using the AMR code RAMSES(Teyssier 2002). we have constructed a sample of thousands of galaxies in 20 clusters. Here we present a kinematic analysis of a large sample of galaxies in the cosmological context. The overall distribution of rotation parameter of simulated galaxies suggests a single peak corresponding to fast rotating galaxies. But when divided by mass, we find a strong mass dependency of galaxy rotation, and massive galaxies are distinctively slow rotating. The cumulated effective of mergers seems to neutralize galaxy rotation as suggested by previous studies (Khochfar et al. 2011, Naab et al. 2014, and Moody et al. 2014). This is consistent with the fact that massive galaxies tend to rotate more slowly after numerous mergers. However, if seen individually, merger can either increase or decrease galaxy rotation depending on mass ratio, orbital parameter, and relative rotation axis of the two galaxies. This explains the existence of some non-slow rotating massive early type galaxies.

  • PDF

MASS DISTRIBUTION IN THE CENTRAL FEW PARSECS OF OUR GALAXY

  • Oh, Seung-Kyung;S. Kim, Sung-Soo;Figer, Donald F.
    • 천문학회지
    • /
    • 제42권2호
    • /
    • pp.17-26
    • /
    • 2009
  • We estimate the enclosed mass profile in the central 10 pc of the Milky Way by analyzing the infrared photometry and the velocity observations of dynamically relaxed stellar population in the Galactic center. HST/NICMOS and Gemini Adaptive Optics images in the archive are used to obtain the number density profile, and proper motion and radial velocity data were compiled from the literature to find the velocity dispersion profile assuming a spherical symmetry and velocity isotropy. From these data, we calculate the the enclosed mass and density profiles in the central 10 pc of the Galaxy using the Jeans equation. Our improved estimates can better describe the exact evolution of the molecular clouds and star clusters falling down to the Galactic center, and constrain the star formation history of the inner part of the Galaxy.

은하계(銀河系)의 질량분포(質量分布) 모형(模型)-III (A Model of the Mass Distribution of the Galaxy-III)

  • 유경노;강용희
    • 천문학회지
    • /
    • 제8권1호
    • /
    • pp.3-9
    • /
    • 1975
  • Densities of the three constituent spheroids of the same eccentricity as our earlier model of the Galaxy are assumed to be given by an analytical form of $_{{\rho}i}$(r)=$k_ie^{-m_ir^u{_i}}$, where $k_i,\;m_i$, and ${\alpha}i$ are obtained by comparing with the results of the previous model. Using three values of $_{{\rho}i}$(r) the galactic rotation curve, mass of each spheroid and the whole Galaxy are calculated, and the three dimensional density distribution in the Galaxy is also obtained. The calculated rotation curve of the model Galaxy is in good agreement with the observed curve, and the shape of the cross section of the model Galaxy given by the computed density is very similar to the inferred shape of the spiral galaxies.

  • PDF

HOST GALAXY OF TIDAL DISRUPTION OBJECT, SWIFT J1644+57

  • YOON, YONGMIN;IM, MYUNGSHIN;LEE, SEONG-KOOK;PAK, SOOJONG
    • 천문학논총
    • /
    • 제30권2호
    • /
    • pp.475-476
    • /
    • 2015
  • We analyze the host galaxy of the tidal disruption object, Swift J1644+57, based on long-term optical to NIR data obtained with CQUEAN and UKIRT WFCAM observations. We decompose the bulge component using high resolution HST WFC3 images. We conclude that the host galaxy is bulge dominant. We investigate optical to NIR light curves and estimate the multi-band fluxes of the host galaxy. We fit spectral energy distribution (SED) models in order to determine the stellar mass. Finally, we estimate the mass of the black hole in the center of the host galaxy based on several scale relations.

Identifying Cluster Candidates in CFHTLS W2 Field

  • Paek, Insu;Im, Myungshin;Kim, Jae-Woo
    • 천문학회보
    • /
    • 제43권1호
    • /
    • pp.59.2-59.2
    • /
    • 2018
  • Recent studies of galaxy clusters have shown that the galaxy clusters in dense environment tend to have lower star formation rate in local universe with z < 1. However, this correlation is not significant in galaxy clusters with z > 1. The study of galaxy clusters around z=1 can yield insight into cosmological galaxy evolution. Nevertheless, the identification of galaxy clusters beyond the scope of immediate local universe requires wide field data in optical and near-infrared bands. By incorporating data from Canada-France-Hawaii Telescope Legacy Survey(CFHTLS) and Infrared Medium-Deep Survey(IMS), the photometric redshifts of galaxies in CFHTLS W2 field were calculated. Using spatial distribution and photometric redshifts, the galaxies in the field were divided into redshift bins. The image of each redshift bin was analyzed by measuring the number density within proper distance of 1Mpc. By comparing high density regions in consecutive redshift bins, we identified the cluster candidates and mapped the large-scale structure within the CFHTLS W2 field.

  • PDF