• Title/Summary/Keyword: The EV

Search Result 984, Processing Time 0.032 seconds

Influence of the Cure Systems on Long Time Thermal Aging Behaviors of NR Composites

  • Choi, Sung-Seen;Kim, Jong-Chul;Lee, Seung-Goo;Joo, Yong-L.
    • Macromolecular Research
    • /
    • v.16 no.6
    • /
    • pp.561-566
    • /
    • 2008
  • NR composites with different curing systems were aged thermally at 60, 70, 80, and $90^{\circ}C$ for 2-185 days in a convection oven, and the changes in the crosslink density were investigated as a function of the accelerated thermal aging. The overall crosslink densities increased with increasing aging time irrespective of the aging temperatures and curing systems. The changes in crosslink density were enhanced by increasing the aging temperature. The degree of the increased crosslink density was in the following order: "the conventional cure system > the semi-EV system > the EV system". For short term thermal aging, the change in crosslink density with the aging time was complicated, particularly for low temperature aging. The activation energies of the change in crosslink density with thermal aging using the conventional and semi-EV cure systems increased and then remained relatively constant with increasing aging time, whereas that of the specimen with an EV cure system tended to increase linearly. The experimental results were explained by the dissociation of the existing polysulfidic linkages and the formation of new cross links through the crosslinking-related chemicals remaining in the sample.

Multi-Objective Optimal Predictive Energy Management Control of Grid-Connected Residential Wind-PV-FC-Battery Powered Charging Station for Plug-in Electric Vehicle

  • El-naggar, Mohammed Fathy;Elgammal, Adel Abdelaziz Abdelghany
    • Journal of Electrical Engineering and Technology
    • /
    • v.13 no.2
    • /
    • pp.742-751
    • /
    • 2018
  • Electric vehicles (EV) are emerging as the future transportation vehicle reflecting their potential safe environmental advantages. Vehicle to Grid (V2G) system describes the hybrid system in which the EV can communicate with the utility grid and the energy flows with insignificant effect between the utility grid and the EV. The paper presents an optimal power control and energy management strategy for Plug-In Electric Vehicle (PEV) charging stations using Wind-PV-FC-Battery renewable energy sources. The energy management optimization is structured and solved using Multi-Objective Particle Swarm Optimization (MOPSO) to determine and distribute at each time step the charging power among all accessible vehicles. The Model-Based Predictive (MPC) control strategy is used to plan PEV charging energy to increase the utilization of the wind, the FC and solar energy, decrease power taken from the power grid, and fulfil the charging power requirement of all vehicles. Desired features for EV battery chargers such as the near unity power factor with negligible harmonics for the ac source, well-regulated charging current for the battery, maximum output power, high efficiency, and high reliability are fully confirmed by the proposed solution.

The Effective Third Circulation Plan Based on Elevator and Escalator Users Surveys in Mixed-Use Buildings (복합건축의 수직동선 이용자별 효율적인 제3동선의 설정)

  • Lee, Jin-Kyoung;Kim, Chan-Ju
    • Journal of the Architectural Institute of Korea Planning & Design
    • /
    • v.35 no.2
    • /
    • pp.3-10
    • /
    • 2019
  • The purpose of the study is to survey the effective methodology of composition and connection for the third pedestrian routes in mixed-use building by case studies. The study is performed as follows: First of all, pedestrian routes are classified into malling route, evacuation route, and the Third route. Secondly, case studies are conducted based on the classification. Thirdly, it is investigated about the composition and connection of the malling and the Third pedestrian route. The investigation is focused on gate, path, central area, vertical circulation(EV and escalator) and the four circulation elements. Finally, the effective methodology is extracted for setting the Third route in mixed-use buildings. The conclusion of the study is as follows: The enhancement of consistency and connection between the main route and the Third route is important for providing convenient paths especially to users who needs shortcut, EV/ES users. Additionally, the connections between EV and gate, between shortcut and EV/ES should be increased to enable users choosing their path as needed.

Smart Panel Board for EV Standard Chargers and Its Control Method (전기자동차 완속충전기용 스마트 분전반 및 그 제어방법)

  • Kim, Myeong-Soo;Hong, Soon-Chan
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.19 no.6
    • /
    • pp.511-521
    • /
    • 2014
  • This study proposes an electric vehicle (EV) smart panel board and its control method on the basis of charging scheduling. The proposed system consists of batteries, a three-phase battery charger, three single-phase inverters, transfer switches for electric power distribution, and a controller. The three-phase battery charger usually charges the batteries at midnight when electric rates are cheap and in light load. When the electric power consumption of the EV standard chargers connected to one phase of the power line is relatively large or when a blackout occurs, the electric power stored in the battery is supplied by discharging through the inverters to the EV standard chargers. As a result, the value of peak load and the charging electric power quantity supplied from a utility grid are reduced, and the current unbalance is improved. The usefulness of the proposed system is confirmed through simulations, experiments, and case studies.

Challenges for the realization of carbon neutrality and air pollution improvement in major Northeast Asian countries: The importance of transitioning to eco-friendly EV industry and the necessity of developing lightweight materials

  • Sung-Hyung Lee;Hitoshi Yashiro;Song-Zhu Kure-Chu
    • Journal of Surface Science and Engineering
    • /
    • v.56 no.1
    • /
    • pp.12-39
    • /
    • 2023
  • Diseases caused by air pollution and abnormal climate are occurring worldwide due to global warming. Accordingly, the international community has established a strategy to respond to climate change, and major countries have shifted their economic policies to eco-friendly industries. In this study, we investigate the current status of the renewable energy industry and that of responses to carbon neutrality and PM2.5 (air pollution) in the three major Northeast Asian countries of Japan, Korea, and China, covering changes in the corporate perceptions of Environment, Social, Governance and RE100. In more detail, the three major Northeast Asian countries, referred to as the climate villains in the international community, explain the importance of successful entry into the electric vehicles (EV) industry for a rapid transition to an eco-friendly industry. Moreover, we study the application of lightweight materials for vehicles to improve mileage in the EV industry and technical problems to be solved in the future.

An Experimental Study on the HEV/EV Traction Motor Rotor Core in Injection Molding Analysis (사출성형해석을 이용한 HEV/EV 구동모터 회전자 철심에 관한 실험적 연구)

  • Hong, Kyeong-Il;Jung, Hyun-Suk;Choi, Kyeo-Gwang;Kim, Se-Hwan;Lim, Se-Jong
    • Design & Manufacturing
    • /
    • v.9 no.1
    • /
    • pp.9-13
    • /
    • 2015
  • The HEV/EV Traction Motor Core manufacturing technology is a core component of Traction Motor Core is a key technology for the manufacture of eco-friendly automotive industry is essential for the competitiveness of the country must obtain the technology. This study was performed to develop a Rotor Core of the HEV/EV Traction Motor using the first time in Korea multi-gate BMC injection molding technique. Executed by the experiment of this study are as follows. Study 1: Developed a multi-gate BMC injection mold for the magnet fixed to the Rotor Core. Study 2: Developed a production implementation and manufacturing technology of the Rotor Core. In this study, the develop products and manufacturing technologies implemented by the BMC injection mold development for Magnet fixed to the Rotor Core and the results are discussed.

  • PDF

Reliability Verification of Battery Disconnecting Unit (BDU 신뢰성 검증)

  • Yoon, Hye-Lim;Ryu, Haeng-Soo;Ji-Hong;Hong-Tae, Park
    • Proceedings of the KIEE Conference
    • /
    • 2011.07a
    • /
    • pp.866-867
    • /
    • 2011
  • As part of the green growth, The Green Car has attracted wide attention. Types of the Green Car are Electric Vehicle, Plug-in Hybrid Electric Vehicle, Hybrid Electric Vehicle, Fuel Cell Vehicle and Clean Diesel Vehicle. Of these, The electric vehicle is equipped with the BDU(Battery Disconnecting Unit). BDU is supplying stable battery power and blocking it to protect electrical system of the electric vehicle. The BDU consists of electric components such as current sensor, fuse and pre-charge resistor. These must pass Voltage withstand test, Salt mist test, Thermal shock test, Vibration test and Short-circuit test commonly to verify reliability of the electric components. In addition, The current sensor should be verified whether normal operation. The breaking capacity of fuse should be verified. The durability of pre-charge resistor should be verified by supplying battery power and blocking it repeatedly. The reliability of BDU as well as the electric vehicle is secured by verifying the reliability of electric components. In addition, It will contribute to the acceleration and promotion of Green Car Technology.

  • PDF

Proposed concept design for electric vehicle charger in public places (공공장소에서의 전기 자동차 충전기 디자인 콘셉트 제안)

  • Jin, A-Young
    • Design & Manufacturing
    • /
    • v.16 no.2
    • /
    • pp.13-19
    • /
    • 2022
  • Recently, electric vehicles are gaining popularity among many domestic and foreign users due to their eco-friendly advantages of reducing fine dust and environmental greenhouse gases. As the demand and supply of electric vehicles increase, the demand for electric vehicle charging infrastructure is also growing together. Many users are experiencing inconvenience due to poor charging infrastructure, which makes them hesitant to buy electric vehicles. Research on the user experience of chargers in apartment complexes, a common residential type in Korea, is being conducted somewhat, but research on the design of electric vehicle charging devices in public places is insufficient. The purpose of this research is to identify user requirements and complaints based on the product design of the electric vehicle charger in public places and propose a new electric vehicle product design concept that meets the requirements. The research method understood the charging base and status of electric vehicles in public places through literature research and examined and analyzed the characteristics and problems of product design cases that improved the charging problem of electric vehicles recently released in the market. It is intended to identify and analyze the problems of the charging device product design through user interviews, a qualitative research method, and based on this, it is intended to propose a user-centered product design concept that improves major complaints.