• 제목/요약/키워드: The CFL condition

검색결과 15건 처리시간 0.022초

FUNWAVE-TVD 수치모형을 이용한 수중천퇴를 통과하는 불규칙파의 수치모의에서 TVD 기법들에 의한 수치해 비교 (Comparison of Numerical Solutions by TVD Schemes in Simulations of Irregular Waves Propagating over a Submerged Shoal Using FUNWAVE-TVD Numerical Model)

  • 최영광;서승남
    • 한국해안·해양공학회논문집
    • /
    • 제30권4호
    • /
    • pp.143-152
    • /
    • 2018
  • 최근 개발된 FUNWAVE-TVD 파랑모형을 이용하여 적용되어 온 TVD 기법들의 수렴도와 수치적인 안정성을 비교하였다. Yamamoto and Daiguji(1993)의 minmod limiter를 사용하는 4차 정확도의 MUSCL-TVD 기법과 Erduran et al.(2005)의 van-Leer limiter를 사용하는 4차 정확도의 MUSCL-TVD 기법, Zhou et al.(2001)의 van-Leer limiter를 사용하는 2차 정확도의 MUSCL-TVD 기법을 비교하였으며, 수리실험 관측치가 제시되어 있는 Vincent and Briggs(1989)의 불규칙 파랑실험에 적용하였다. 불규칙 파랑의 비쇄파 실험 결과에서 minmod limiter를 사용하는 4차 정확도의 기법은 van-Leer limiter를 사용하는 기법이 요구하는 격자의 크기만큼 세밀한 격자를 요구하지는 않지만, 더 낮은 CFL을 사용해야 안정적인 모의가 가능하였다. 반면에 van-Leer limiter를 사용하는 기법에서는 numerical dissipation을 줄이기 위하여 보다 세밀한 격자를 필요로 하지만 비교적 높은 CFL을 사용할 수 있는 것으로 나타났다. 각 기법의 numerical dissipation의 영향을 최대한 줄이기 위하여 공간격자를 충분히 줄인 쇄파 모의 실험에서는 비쇄파 실험에 비하여 각 기법의 특성이 명확히 나타났다. Numerical dissipation이 상대적으로 작은 minmod limiter를 사용하는 기법으로 모의할 때는 격자를 충분히 줄이면 수치적인 불안정성이 나타나며 수치해가 발산하는 결과를 보였지만, van-Leer limiter를 사용하는 기법에서는 비교적 낮은 CFL을 사용하여 쇄파 모의가 완료되었으며, 관측치를 잘 재현하는 결과를 보였다.

Atomistic analysis of nano/micro biosensors

  • Chen, James;Lee, James D.
    • Interaction and multiscale mechanics
    • /
    • 제3권2호
    • /
    • pp.111-121
    • /
    • 2010
  • Dynamic analysis of nano/micro bio-sensors based on a multiscale atomistic/continuum theory is introduced. We use a generalized atomistic finite element method (GAFEM) to analyze a bio-sensor which has $3{\times}N_a{\times}N_p$ degrees of freedom, where $N_p$ is the number of representative unit cells and $N_a$ is the number of atoms per unit cell. The stiffness matrix is derived from interatomic potential between pairs of atoms. This work contains two studies: (1) the resonance analysis of nano bio-sensors with different amount of target analyte and (2) the dependence of resonance frequency on finite element mesh. We also examine the Courant-Friedrichs-Lewy (CFL) condition based on the highest resonance frequency. The CFL condition is the criterion for the time step used in the dynamic analysis by GAFEM. Our studies can be utilized to predict the performance of micro/nano bio-sensors from atomistic perspective.

적응시간 간격 알고리즘을 이용한 KIM의 계산 효율성 개선 (The Improvement of Computational Efficiency in KIM by an Adaptive Time-step Algorithm)

  • 남현;최석진
    • 대기
    • /
    • 제33권4호
    • /
    • pp.331-341
    • /
    • 2023
  • A numerical forecasting models usually predict future states by performing time integration considering fixed static time-steps. A time-step that is too long can cause model instability and failure of forecast simulation, and a time-step that is too short can cause unnecessary time integration calculations. Thus, in numerical models, the time-step size can be determined by the CFL (Courant-Friedrichs-Lewy)-condition, and this condition acts as a necessary condition for finding a numerical solution. A static time-step is defined as using the same fixed time-step for time integration. On the other hand, applying a different time-step for each integration while guaranteeing the stability of the solution in time advancement is called an adaptive time-step. The adaptive time-step algorithm is a method of presenting the maximum usable time-step suitable for each integration based on the CFL-condition for the adaptive time-step. In this paper, the adaptive time-step algorithm is applied for the Korean Integrated Model (KIM) to determine suitable parameters used for the adaptive time-step algorithm through the monthly verifications of 10-day simulations (during January and July 2017) at about 12 km resolution. By comparing the numerical results obtained by applying the 25 second static time-step to KIM in Supercomputer 5 (Nurion), it shows similar results in terms of forecast quality, presents the maximum available time-step for each integration, and improves the calculation efficiency by reducing the number of total time integrations by 19%.

LED 등기구의 발열과 실내온도 상승에 관한 연구 (A Study on the Heat Radiation of LED Luminaires and the Indoor Temperature Increase)

  • 김동건;길경석
    • 한국전기전자재료학회논문지
    • /
    • 제25권9호
    • /
    • pp.738-742
    • /
    • 2012
  • This paper conducted a study on how the heat radiation of light emitting diode(LED) luminaires affects the indoor temperature increase. The effect was compared with that of a 20 W compact fluorescent lamp(CFL) and a 50 W MR16 halogen lamp which are most widely used inside of cruises, a LED downlight and a 4W MR16 LED replacing each of them. We installed a luminarie inside a thermally shielded chamber, measuring the temperature changes under the same volume every 5 minutes and compared the result with theoretically calculated heat radiation. The temperature changes in the chamber was measured four times, on seven hours' period in order to keep sufficient time once the temperature reaches the thermal equilibrium state. The results showed that the temperature of the 20 W E26 CFL and the 10 W LED downlight increased by $21.1^{\circ}C$ and $10.4^{\circ}C$ respectively, while that of the 50 W halogen MR16 and the 4 W LED MR16 increased by $33.9^{\circ}C$ and $4.8^{\circ}C$ respectively. The experimental heat radiation were calculated from the results and the experimental heat radiation of the CFL and the LED downlight were 171.5 cal and 86.5 cal, and those of the halogen MR16 and the LED MR16 were 275.3 cal and 36.5 cal. Therefore, the heat radiation was reduced by 49.5% and 86.7%, respectively, by replacing conventional light source with LED. In conclusion, we can expect a reduction of power consumption in air condition system and the effect on indoor temperature increase by application of LED luminaires.

Analysis of optimum grid determination of water quality model with 3-D hydrodynamic model using environmental fluid dynamics code (EFDC)

  • Yin, Zhenhao;Seo, Dongil
    • Environmental Engineering Research
    • /
    • 제21권2호
    • /
    • pp.171-179
    • /
    • 2016
  • This study analyzes guidelines to select optimum number of grids to represent behavior of a given water system appropriately. The EFDC model was chosen as a 3-D hydrodynamic and water quality model and salt was chosen as a surrogate variable of pollutant. The model is applied to an artificial canal that receives salt water from coastal area and fresh water from a river from respective gate according to previously developed gate operation rule. Grids are subdivided in vertical and horizontal (longitudinal) directions, respectively until no significant changes are found in salinity concentrations. The optimum grid size was determined by comparing errors in average salt concentrations between a test grid systems against the most complicated grid system. MSE (mean squared error) and MAE (mean absolute error) are used to compare errors. The CFL (Courant-Friedrichs-Lewy) number was used to determine the optimum number of grid systems for the study site though it can be used when explicit numerical method is applied only. This study suggests errors seem acceptable when both MSE and MAE are less than unity approximately.

수치 민감도 해석을 통한 파랑중 FPSO운동 시뮬레이션 (Motion Simulation of FPSO in Waves through Numerical Sensitivity Analysis)

  • 김제인;박일룡;서성부;강용덕;홍사영;남보우
    • 한국해양공학회지
    • /
    • 제32권3호
    • /
    • pp.166-176
    • /
    • 2018
  • This paper presents a numerical sensitivity analysis for the simulation of the motion performance of an offshore structure in waves using computational fluid dynamics (CFD). Starting with 2D wave simulations with varying numerical parameters such as grid spacing and CFL value, proper numerical conditions were found for accurate wave propagation that avoids numerical diffusion problems. These results were mapped on 2D error distributions of wave amplitude and wave length against the numbers of grids per wave length and per wave height under a given CFL condition. Finally, the 2D numerical sensitivity result was validated through CFD simulation of the motion of a FPSO in waves showing good accuracy in motion RAOs compared with existing potential flow solutions.

A SEMI-LAGRANGIAN METHOD BASED ON WENO INTERPOLATION

  • Yi, Dokkyun;Kim, Hyunsook
    • 충청수학회지
    • /
    • 제28권4호
    • /
    • pp.623-633
    • /
    • 2015
  • In this paper, a general Weighted Essentially Non-Oscillatory (WENO) interpolation is proposed and applied to a semi-Lagrangian method. The proposed method is based on the conservation law, and characteristic curves are used to complete the semi-Lagrangian method. Therefore, the proposed method satisfies conservation of mass and is free of the CFL condition which is a necessary condition for convergence. Using a several standard examples, the proposed method is compared with the third order Strong Stability Preserving (SSP) Runge-Kutta method to verify the high-order accuracy.

직교격자를 이용한 2차원 비정상 유동해석 코드 개발 (DEVELOPMENT OF A 2-D UNSTEADY FLOW SIMULATION CODE USING CARTESIAN MESHES)

  • 정민규;이재은;박세연;권오준;권장혁;신하용
    • 한국전산유체공학회:학술대회논문집
    • /
    • 한국전산유체공학회 2009년 춘계학술대회논문집
    • /
    • pp.116-120
    • /
    • 2009
  • A two-dimensional unsteady inviscid flow solver has been developed for the simulation of complex geometric configurations on adaptive Cartesian meshes. Embedded condition was used for boundary condition and a predictor-corrector explicit time marching scheme was used for time-accurate numerical simulation. The Cartesian mesh generator, which was previously developed for steady problem, was used grid generation for unsteady flow. The solver was based on ALE formulation for body motion. For diminishing the effects of cut-cells, the cell merging method was used. Using cell merging method, it was eliminated the CFL constraints. The conservation problem, which is caused cell-type variation around region swept by solid boundary, was also solved using cell merging method. The results are presented for 2D circular cylinder and missile launching problem.

  • PDF

연직변환좌표(鉛直變換座標)에서 3차원(次元) 유동(流動) 수직모형(數値模型) (A Three-Dimensional Numerical Model of Hydrodynamic Flow on σ-Coordinate)

  • 정태성;이길성
    • 대한토목학회논문집
    • /
    • 제14권5호
    • /
    • pp.1145-1158
    • /
    • 1994
  • 물의 유동(流動)에 관한 계산상 효율성(效率性)을 갖는 자유수면(自由水面)을 고려한 3차원(次元) 유한차분(有限差分) 수직모형(數値模型)을 개발하였다. 수직모형(數値模型)은 연직방향(鉛直方向)에 대해 정규화(正規化)한 좌표(座標)(${\sigma}$-coordinate)를 사용하며, 시간(時間) 적분방법(積分方法)으로는 반음해법(半陰解法)(semi-implicit)을 사용하여 계산시간(計算時間)의 효율성(效率性)을 도모하였다. 모드분리(mode-splitting)개념을 도입하여 내부모드(internal mode)에 대해서는 양해법(陽解法)을 사용하였으며, 외부모드(external mode)는 수평방향(水平方向) 운동량방정식(運動量方程式)들과 연속방정식(連續方程式)의 차분식(差分式)으로부터 구한 타원형(楕圓型) 차분방정식(差分方程式)을 SOR방법에 의하여 해석하였다. 이와 같은 방법은 계산(計算) 시간간격(詩間間隔)이 표면(表面) 중력파(重力波)에 대한 CFL(Courant-Fredrich-Lewy)조건에 의해 제약을 받지 않아 계산시간(計算時間)의 효율성을 도모할 수 있다. 개발된 모형은 1차원(次元) 수로(水路)에서 취송유(吹送流)의 연직분포(鉛直分布)에 대한 해석해(解析解)와 비교(比較) 및 연직(鉛直) 가변격자(可變格子)의 도입에 따른 오차분석(誤差分析) 정사각형(正四角形) 호수(湖水)에서 취송유(吹送流) 계산(計算) 및 차분화(差分化) 상수(常數)들의 민감도(敏感度) 분석(分析)을 수행하였다.

  • PDF

비압축성 나비어-스톡스 방정식의 완전 내재적 분리 방법 (Fully-Implicit Decoupling Method for Incompressible Navier-Stokes Equations)

  • 김경연;백승진;성형진
    • 대한기계학회논문집B
    • /
    • 제24권10호
    • /
    • pp.1317-1325
    • /
    • 2000
  • A new efficient numerical method for computing three-dimensional, unsteady, incompressible flows is presented. To eliminate the restriction of CFL condition, a fully-implicit time advancement in which the Crank-Nicolson method is used for both the diffusion and convection terms, is adopted. Based on an approximate block LU decomposition method, the velocity -pressure decoupling is achieved. The additional decoupling of the intermediate velocity components in the convection term is made for the fully -implicit time advancement scheme. Since the iterative procedures for the momentum equations are not required, the velocity components decouplings bring forth the reduction of computational cost. The second-order accuracy in time of the present numerical algorithm is ascertained by computing decaying vortices. The present decoupling method is applied to minimal channel flow unit with DNS (Direct Numerical Simulation).