• Title/Summary/Keyword: The Butterfly Model

Search Result 49, Processing Time 0.035 seconds

A Optimization of Butterfly Valve using the Characteristic Function (특성함수를 이용한 Butterfly Valve의 최적설계)

  • Park, Young-Chul;Choi, Jong-Sub;Kang, Jin
    • Journal of Ocean Engineering and Technology
    • /
    • v.19 no.3
    • /
    • pp.59-65
    • /
    • 2005
  • In today's industry, the butterfly valve has been used to control a flow effectively. However, it is difficult to have the existing structural optimization using field analysis from CFD to structure analysis when the structure is influenced by fluid. Therefore, an initial model of this study is to evaluate the stability of the valve using FEM and CFD. And, it selected variable using initial analysis results. Also, it accomplished the shape optimization design using the orthogonal arrangement and characteristic function. Research result, a few experiments showed the optimal results of there dimensional structures to be multi-objective.

Learning Effects of Divide-and-Combine Principles and State Models on Contradiction Problem Solving and Growth Mindset (분할-결합 원리와 상태모형에 대한 학습이 모순문제 해결과 성장 마인드세트에 미치는 영향)

  • Hyun, Jung Suk;Park, Chan Jung
    • Knowledge Management Research
    • /
    • v.14 no.4
    • /
    • pp.19-46
    • /
    • 2013
  • This paper aims to show the learning process and the educational effects of Divide-and-Combine principles and State Models, which are included in the Butterfly Model for creative problem solving. In our State Models, there are Time State Model, Space State Model, and Whole-Parts State Model. We have taught middle school students (for 18 hours), high school students (for 24 hours), and undergraduate students (for 1 semester) about our proposed Models when they solved contradiction problems. Also, we have made the students learn our contradiction resolution algorithms by themselves based on team-based discussion. By learning and by using our Models, the students had the higher level of expertise in contradiction problems and had the growth mindset that made them have confidence in themselves and kept them challenging themselves about problems. Also, learning and solving with our Models improved the students' growth mindset as well as their problem-solving ability.

  • PDF

A STUDY ON EXPERIMENTAL AND NUMERICAL ANALYSIS ON THE COMPRESSIBLE FLOW INTO A BUTTERFLY VALVE (버터플라이 밸브를 통과하는 압축성 유동에 대한 실험 및 수치해석적 연구)

  • Hwang, K.S.;Chang, M.S.;Hong, J.P.;Heo, H.S.
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2007.10a
    • /
    • pp.181-186
    • /
    • 2007
  • Compressible flow characteristics in a butterfly valve is studied experimentally and numerically. The disk angle of the valve is changed as $0^{\circ}{\sim}30^{\circ}$. The SST model is used to represent the turbulent effect in the commercial code, CFX11. It was found that the numerical results are similar to the experimental ones, general discussions are given to the pressure distributions upon the disk angle of the valve.

  • PDF

Prognosis of aerodynamic coefficients of butterfly plan shaped tall building by surrogate modelling

  • Sanyal, Prasenjit;Banerjee, Sayantan;Dalui, Sujit Kumar
    • Wind and Structures
    • /
    • v.34 no.4
    • /
    • pp.321-334
    • /
    • 2022
  • Irregularity in plan shape is very common for any type of building as it enhances better air ventilation for the inhabitants. Systematic opening at the middle of the facades makes the appearance of the building plan as a butterfly one. The primary focus of this study is to forecast the force, moment and torsional coefficient of a butterfly plan shaped tall building. Initially, Computational Fluid Dynamics (CFD) study is done on the building model based on Reynolds averaged Navier Stokes (RANS) k-epsilon turbulence model. Fifty random cases of irregularity and angle of attack (AOA) are selected, and the results from these cases are utilised for developing the surrogate models. Parametric equations are predicted for all these aerodynamic coefficients, and the training of these outcomes are also done for developing Artificial Neural Networks (ANN). After achieving the target acceptance criteria, the observed results are compared with the primary CFD data. Both parametric equations and ANN matched very well with the obtained data. The results are further utilised for discussing the effects of irregularity on the most critical wind condition.

A Study on Difficulties Experienced by Pre-service Elementary School Teachers in Carrying out a Research on 'the Life Cycle of a Common Cabbage Butterfly' (초등 예비교사들이 '배추흰나비 한살이' 탐구 수행과정에서 겪는 어려움)

  • Kim, Dong-Ryeul
    • Journal of Korean Elementary Science Education
    • /
    • v.33 no.2
    • /
    • pp.306-321
    • /
    • 2014
  • This study aims to analyze difficulties that pre-service elementary teachers experience in investigating the life cycle of a common cabbage butterfly in person. As difficulties they face during the process of this research, they pointed out collecting eggs, observing molting, creating environments for a breeding cage, feeding, building a breeding cage, and making butterfly specimens. Out of all the environmental difficulties related to their school fields, they pointed out a difficulty of time management most of all, followed by placing a breeding cage in the classroom and the lack of microscopes for observation. In regard to difficulties related to their evaluations on students' activities, they found it difficult to evaluate students' activity with the life cycle of an insect in the aspect of knowledge and even to set evaluation criteria. Besides, many of them responded that it would be appropriate to evaluate a research on the life cycle of an insect through a portfolio or an observation journal. In regard to difficulties in terms of teachers' knowledge, they found it difficult to understand insect molting, metamorphoses, complete metamorphoses, incomplete metamorphoses, the structure of an insect body, and how to distinguish a female insect from a male one. In regard to the application of class models, they knew it is important for students to have various experiences through direct observation, so the experience-based learning model was proper for the process of observing the life cycle of a common cabbage butterfly. However, they found it difficult for students to observe each stage of the life cycle in person.

A Study on the Efficient Flow Analysis due to Valve Shape (밸브 형상에 따른 효율적인 유동해석에 관한 연구)

  • Choi, Kyekwang;Cho, Jaeung
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.19 no.6
    • /
    • pp.17-22
    • /
    • 2020
  • This study investigates the flow efficiency based on valve shape. Three models are designed for the throttle, ball, and butterfly valves. Results show that Flow Model B, representing the ball valve, demonstrates the fastest flow rate among the three models. Although pressure contours are present on the side surfaces of the valve wings for all models, Flow Model C, representing the butterfly valve, demonstrates to be under the least amount of applied pressure among the three models. The results of this study can be utilized to efficiently control the air flow through various types of valves.

The Structural Design for Nonlinear Hyperelastic Materials Based on CFD (CFD 기반의 비선형 초탄성 재료의 구조 설계)

  • Jung Dae-Seok;Kim Ji-Young;Lee Jong-Moon;Park Young-Chul
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.30 no.4 s.247
    • /
    • pp.379-386
    • /
    • 2006
  • The hyper-elastic material has been used gradually and its range was extended all over the industry. The performance prediction of hyper-elastic material was required not only experimental methods but also numerical methods. In this study, we presented the process how to use numerical method for hyper-elastic material and applied it to seat-ring of butterfly valve. The finite element analysis was executed to evaluate the mechanical characteristics of hyper-elastic material. And the optimum model considered conditions and features. According to that model, the load conditions were obtained by using CFD analysis.

The Nonlinear Structure Design for Hyper-elastic Meterials Using Contact Analysis (비선형 해석을 이용한 초탄성 재료의 구조 최적 설계)

  • Kim J.Y.;Jung D.S.;Park Y.C.
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2005.06a
    • /
    • pp.1315-1321
    • /
    • 2005
  • Using hyper-elastic material has been increased gradually and its range was extended all over the industrial. In addition, the performance prediction of this material was required not only experimental methods like metal material but also numerical methods. In this study, we presented the process how to use numerical method for hyper-elastic material and then, it was applied for seat-ring of butterfly valve by using this process. The finite element analysis was executed to evaluate the mechanical characteristics of hyper-elastic material and search the optimum model considered conditions and features. According to that model the coefficient was obtained by using Contact analysis.

  • PDF

On the Crabbing Tests of Cruise Vessel Equipped with Bow Thrusters and POD System (Bow Thruster가 있는 POD 추진 크루즈선의 Crabbing 시험)

  • Yeo, Dong-Jin
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.49 no.4
    • /
    • pp.327-332
    • /
    • 2012
  • International Towing Tank Conference (ITTC) recommended verifying a ship's ability to move transversely at zero forward speed without altering heading by a crabbing test. In sea trial, all available propellers/rudders/thrusters should be used to find the maximum possible transverse speed. For estimating crabbing ability in the design stage, tests to estimate possible swaying force and yawing moment range using all available propellers/rudders/thrusters are conducted. By butterfly diagram, which compares possible swaying force and yawing moment range with external swaying force and yawing moment by wind, a ship's crabbing ability can be estimated. In this study, model tests of a cruise vessel equipped with bow thrusters and POD system were conducted to find out her crabbing ability in the design stage. To mimic quay condition, a model quay-wall was set in the towing tank.

An Optimization for Flow Control Butterfly Valve using Grey Relational Analysis (회색 관계 분석을 이용한 유량 제어용 버터플라이밸브 형상 최적화)

  • Lee, Sang Beom;Lee, Dong Myung
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.26 no.6
    • /
    • pp.359-366
    • /
    • 2014
  • This paper considered optimization method of appending a shape on a disc in an attempt to improve core functions, which are inherent in flow characteristics. The paper also verifies the optimization method of appendage shape with a Class 150 200A Butterfly valve. Then the design of experiment (DOE) with an orthogonal array is performed to analyze the effect of form parameters by grey relational analysis and analysis of mean (ANOM). And this study sets flow coefficient as an object functions for optimization, and the conventional disc model and the optimal appendage shape on disc model are compared by computational fluid analysis. The paper concludes that an optimal appendage shape on disc model achieves wider usability by a wider operating range.