• Title/Summary/Keyword: The 3D image

Search Result 5,074, Processing Time 0.039 seconds

A Study on 3D View Design of Images and Voices Integration for Effective Information Transfer (효과적 정보전달을 위한 영상정보의 3D 뷰 및 음성정보와의 융합 연구)

  • Shin, C.H.;Lee, J.S.
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.35 no.1B
    • /
    • pp.35-41
    • /
    • 2010
  • In this paper, we propose a 3D view design scheme which arranges 2D information in a 3D virtual space with a flexible interface and voice information. The scheme allows the user interface of the 2D image in 3D virtual space anytime from any view point. Voice information can be easily attached. It is this simple and efficient image and voice information arrangement in 3D virtual space that improves information transfer.

Vision Based Estimation of 3-D Position of Target for Target Following Guidance/Control of UAV (무인 항공기의 목표물 추적을 위한 영상 기반 목표물 위치 추정)

  • Kim, Jong-Hun;Lee, Dae-Woo;Cho, Kyeum-Rae;Jo, Seon-Yeong;Kim, Jung-Ho;Han, Dong-In
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.14 no.12
    • /
    • pp.1205-1211
    • /
    • 2008
  • This paper describes methods to estimate 3-D position of target with respect to reference frame through monocular image from unmanned aerial vehicle (UAV). 3-D position of target is used as information for surveillance, recognition and attack. In this paper. 3-D position of target is estimated to make guidance and control law, which can follow target, user interested. It is necessary that position of target is measured in image to solve 3-D position of target. In this paper, kalman filter is used to track and output position of target in image. Estimation of target's 3-D position is possible using result of image tracking and information of UAV and camera. To estimate this, two algorithms are used. One is methode from arithmetic derivation of dynamics between UAV, carmer, and target. The other is LPV (Linear Parametric Varying). These methods have been run on simulation, and compared in this paper.

3D Visualization of Medical Image Registration using VTK (VTK를 이용한 의료영상정합의 3차원 시각화)

  • Lee, Myung-Eun;Kim, Soo-Hyung;Lim, Jun-Sik
    • The KIPS Transactions:PartB
    • /
    • v.15B no.6
    • /
    • pp.553-560
    • /
    • 2008
  • The amount of image data used in medical institution is increasing rapidly with great development of medical technology. Therefore, an automation method that use image processing description, rather than manual macrography of doctors, is required for the analysis large medical data. Specially, medical image registration, which is the process of finding the spatial transform that maps points from one image to the corresponding points in another image, and 3D analysis and visualization skills for a series of 2D images are essential technologies. However, a high establishment cost raise a budget problem, and hence small scaled hospitals hesitate importing these medical visualizing system. In this paper, we propose a visualization system which allows user to manage datasets and manipulates medical images registration using an open source graphics tool - VTK(Visualization Tool Kit). The propose of our research is to get more accurate 3D diagnosis system in less expensive price, compared to existing systems.

Dielectric Waveguide Channel Dropping Filter (유전체 도파관을 이용한 채널 드로핑 필터)

  • 김신기;박동철;오승엽
    • Journal of the Korean Institute of Telematics and Electronics
    • /
    • v.25 no.1
    • /
    • pp.1-7
    • /
    • 1988
  • A new type broadband channel dropping filter which has a potential use as a millimeter-wave multiplexer has been realized by properly connecting 3-dB directional couplers and bandstop filters. 90\ulcorner3-dB directional couplers have been designed using two nonuniformly coupled dielectric image guides, while bandstop filters with Chebyshev passbands have been designed using dielectric image-guide grating structure. Effective dielectric constant method has been aplied to the image-guide dispersion analysis and to the design of bandstop gratings and 3-dB couplers. Experimental results in excellent agreement with computed responses are demonstrated.

  • PDF

3D Faces Reconstruction Using Structured Light Images (구조 광 영상을 이용한 3차원 얼굴 복원)

  • Lee, Duk-Ryong;Oh, Il-Seok
    • Proceedings of the Korea Contents Association Conference
    • /
    • 2008.05a
    • /
    • pp.15-18
    • /
    • 2008
  • This paper proposes a method to reconstruct the 3-D face using structured light image. First of all, we suppose that each sight vector of a projector and camera are parallel. We project the structured light in the shape of lattice on the background to acquire the reference-structured light image. This image is used to calibrate the projector and camera. Since then, we acquire the face-structured light image which is projected the same structured light on the face. These two structured light images are used to reconstruct the 3-D face through the variation which is measured from the positional difference of feature vectors. In our experiment result, we could reconstruct the 3-D face image as recognize through these simple devices.

  • PDF

Development of New Photogrammetric Software for High Quality Geo-Products and Its Performance Assessment

  • Jeong, Jae-Hoon;Lee, Tae-Yoon;Rhee, Soo-Ahm;Kim, Hyeon;Kim, Tae-Jung
    • Korean Journal of Remote Sensing
    • /
    • v.28 no.3
    • /
    • pp.319-327
    • /
    • 2012
  • In this paper, we introduce a newly developed photogrammetric software for automatic generation of high quality geo-products and its performance assessment carried out using various satellite images. Our newly developed software provides the latest techniques of an optimized sensor modelling, ortho-image generation and automated Digital Elevation Model (DEM) generation for diverse remote sensing images. In particular, images from dual- and multi-sensor images can be integrated for 3D mapping. This can be a novel innovation toward a wider applicability of remote sensing data, since 3D mapping has been limited within only single-sensor so far. We used Kompsat-2, Ikonos, QuickBird, Spot-5 high resolution satellite images to test an accuracy of 3D points and ortho-image generated by the software. Outputs were assessed by comparing reliable reference data. From various sensor combinations 3D mapping were implemented and their accuracy was evaluated using independent check points. Model accuracy of 1~2 pixels or better was achieved regardless of sensor combination type. The high resolution ortho-image results are consistent with the reference map on a scale of 1:5,000 after being rectified by the software and an accuracy of 1~2 pixels could be achieved through quantitative assessment. The developed software offers efficient critical geo-processing modules of various remote sensing images and it is expected that the software can be widely used to meet the demand on the high-quality geo products.

Design and Fabrication of K-band multi-channel receiver for short-range RADAR (근거리 레이더용 K대역 다채널 전단 수신기 설계 및 제작)

  • Kim, Sang-Il;Lee, Seung-Jun;Lee, Jung-Soo;Lee, Bok-Hyung
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.37 no.7A
    • /
    • pp.545-551
    • /
    • 2012
  • In this paper, K-band multi-channel receiver was designed and fabricated for low noise amplification and down conversion to L-band. The fabricated multi-channel receiver incorporates GaAs-HEMT LNA(Low noise amplifier) which provides less than a 2 dB noise figure, IR(Image Rejection) Filter for rejection of image frequency, IR(Image rejection) mixer to reject a image frequency and improve an IMD(Intermodulation Distortion) characteristic. Test results of the fabricated multi-channel receiver show less than a 3.8 dB noise figure, conversion gain of more than 27dB, and IP1dB(Input 1dB Gain Compression Point) of -9.5 dB and over.

Comparison of the observer reliability of cranial anatomic landmarks based on cephalometric radiograph and three-dimensional computed tomography scans (삼차원 전산화단층촬영사진과 측모두부 방사선규격사진의 계측자에 따른 계측오차에 대한 비교분석)

  • Kim, Jae-Young;Lee, Dong-Keun;Lee, Sang-Han
    • Journal of the Korean Association of Oral and Maxillofacial Surgeons
    • /
    • v.36 no.4
    • /
    • pp.262-269
    • /
    • 2010
  • Introduction: Accurate diagnosis and treatment planning are very important for orthognathic surgery. A small error in diagnosis can cause postoperative functional and esthetic problems. Pre-existing 2-dimensional (D) chephalogram analysis has a high likelihood of error due to its intrinsic and extrinsic problems. A cephalogram can also be inaccurate due to the limited anatomic points, superimposition of the image, and the considerable time and effort required. Recently, an improvement in technology and popularization of computed tomography (CT) provides patients with 3-D computer based cephalometric analysis, which complements traditional analysis in many ways. However, the results are affected by the experience and the subject of the investigator. Materials and Methods: The effects of the sources human error in 2-D cephalogram analysis and 3-D computerized tomography cephalometric analysis were compared using Simplant CMF program. From 2008 Jan to 2009 June, patients who had undergone CT, cephalo AP, lat were investigated. Results: 1. In the 3 D and 2 D images, 10 out of 93 variables (10.4%) and 11 out 44 variables (25%), respectively, showed a significant difference. 2. Landmarks that showed a significant difference in the 2 D image were the points frequently superimposed anatomically. 3. Go Po Orb landmarks, which showed a significant difference in the 3 D images, were found to be the artificial points for analysis in the 2 D image, and in the current definition, these points cannot be used for reproducibility in the 3 D image. Conclusion: Generally, 3-D CT images provide more precise identification of the traditional cephalometric landmark. Greater variability of certain landmarks in the mediolateral direction is probably related to the inadequate definition of the landmarks in the third dimension.

A Study on Process of Creating 3D Models Using the Application of Artificial Intelligence Technology

  • Jiayuan Liang;Xinyi Shan;Jeanhun Chung
    • International Journal of Advanced Culture Technology
    • /
    • v.11 no.4
    • /
    • pp.346-351
    • /
    • 2023
  • With the rapid development of Artificial Intelligence (AI) technology, there is an increasing variety of methods for creating 3D models. These include innovations such as text-only generation, 2D images to 3D models, and combining images with cue words. Each of these methods has unique advantages, opening up new possibilities in the field of 3D modeling. The purpose of this study is to explore and summarize these methods in-depth, providing researchers and practitioners with a comprehensive perspective to understand the potential value of these methods in practical applications. Through a comprehensive analysis of pure text generation, 2D images to 3D models, and images with cue words, we will reveal the advantages and disadvantages of the various methods, as well as their applicability in different scenarios. Ultimately, this study aims to provide a useful reference for the future direction of AI modeling and to promote the innovation and progress of 3D model generation technology.

Reconstruction of Collagen Using Tensor-Voting & Graph-Cuts

  • Park, Doyoung
    • Journal of Advanced Information Technology and Convergence
    • /
    • v.9 no.1
    • /
    • pp.89-102
    • /
    • 2019
  • Collagen can be used in building artificial skin replacements for treatment of burns and towards the reconstruction of bone as well as researching cell behavior and cellular interaction. The strength of collagen in connective tissue rests on the characteristics of collagen fibers. 3D confocal imaging of collagen fibers enables the characterization of their spatial distribution as related to their function. However, the image stacks acquired with confocal laser-scanning microscope does not clearly show the collagen architecture in 3D. Therefore, we developed a new method to reconstruct, visualize and characterize collagen fibers from fluorescence confocal images. First, we exploit the tensor voting framework to extract sparse reliable information about collagen structure in a 3D image and therefore denoise and filter the acquired image stack. We then propose to segment the collagen fibers by defining an energy term based on the Hessian matrix. This energy term is minimized by a min cut-max flow algorithm that allows adaptive regularization. We demonstrate the efficacy of our methods by visualizing reconstructed collagen from specific 3D image stack.