• Title/Summary/Keyword: The 3D image

Search Result 5,074, Processing Time 0.042 seconds

Attentional mechanisms for video retargeting and 3D compressive processing (비디오 재설정 및 3D 압축처리를 위한 어텐션 메커니즘)

  • Hwang, Jae-Jeong
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.15 no.4
    • /
    • pp.943-950
    • /
    • 2011
  • In this paper, we presented an attention measurement method in 2D and 3D image/video to be applied for image and video retargeting and compressive processing. 2D attention is derived from the three main components, intensity, color, and orientation, while depth information is added for 3D attention. A rarity-based attention method is presented to obtain more interested region or objects. Displaced depth information is matched to attention probability in distorted stereo images and finally a stereo distortion predictor is designed by integrating low-level HVS responses. As results, more efficient attention scheme is developed from the conventional methods and performance is proved by applying for video retargeting.

Construction of 3D Spatial Information of Vertical Structure by Combining UAS and Terrestrial LiDAR (UAS와 지상 LiDAR 조합에 의한 수직 구조물의 3차원 공간정보 구축)

  • Kang, Joon-Oh;Lee, Yong-Chang
    • Journal of Cadastre & Land InformatiX
    • /
    • v.49 no.2
    • /
    • pp.57-66
    • /
    • 2019
  • Recently, as a part of the production of spatial information by smart cities, three-dimensional reproduction of structures for reverse engineering has been attracting attention. In particular, terrestrial LiDAR is mainly used for 3D reproduction of structures, and 3D reproduction research by UAS has been actively conducted. However, both technologies produce blind spots due to the shooting angle. This study deals with vertical structures. 3D model implemented through SfM-based image analysis technology using UAS and reproducibility and effectiveness of 3D models by terrestrial LiDAR-based laser scanning are examined. In addition, two 3D models are merged and reviewed to complement the blind spot. For this purpose, UAS based image is acquired for artificial rock wall, VCP and check point are set through GNSS equipment and total station, and 3D model of structure is reproduced by using SfM based image analysis technology. In addition, Through 3D LiDAR scanning, the 3D point cloud of the structure was acquired, and the accuracy of reproduction and completeness of the 3D model based on the checkpoint were compared and reviewed with the UAS-based image analysis results. In particular, accuracy and realistic reproducibility were verified through a combination of point cloud constructed from UAS and terrestrial LiDAR. The results show that UAS - based image analysis is superior in accuracy and 3D model completeness and It is confirmed that accuracy improves with the combination of two methods. As a result of this study, it is expected that UAS and terrestrial LiDAR laser scanning combination can complement and reproduce precise three-dimensional model of vertical structure, so it can be effectively used for spatial information construction, safety diagnosis and maintenance management.

High-quality Stitching Method of 3D Multiple Dental CT Images (3차원 다중 치과 CT 영상의 고화질 스티칭 기법)

  • Park, Seyoon;Park, Seongjin;Lee, Jeongjin;Shin, Juneseuk;Shin, Yeong-Gil
    • Journal of Korea Multimedia Society
    • /
    • v.17 no.10
    • /
    • pp.1205-1212
    • /
    • 2014
  • In this paper, we propose a high-quality stitching method of 3D multiple dental CT images. First, a weighted function is generated using the difference of two distance functions that calculate a distance from the nearest edge of an overlapped region to each position. And a blending ratio propagation function for two gradient vectors is parameterized by the difference and magnitude of gradient vectors that is also applied by the weighted function. When the blending ratio is propagated, an improved region growing scheme is proposed to decide the next position and calculate the blending intensity. The proposed method produces a high-quality stitching image. Our method removes the seam artifact caused by the mean intensity difference between images and vignetting effect. And it removes double edges caused by local misalignment. Experimental results showed that the proposed method produced high-quality stitching images for ten patients. Our stitching method could be usefully applied into the stitching of 3D or 2D multiple images.

Virtual Target Overlay Technique by Matching 3D Satellite Image and Sensor Image (3차원 위성영상과 센서영상의 정합에 의한 가상표적 Overlay 기법)

  • Cha, Jeong-Hee;Jang, Hyo-Jong;Park, Yong-Woon;Kim, Gye-Young;Choi, Hyung-Il
    • The KIPS Transactions:PartD
    • /
    • v.11D no.6
    • /
    • pp.1259-1268
    • /
    • 2004
  • To organize training in limited training area for an actuai combat, realistic training simulation plugged in by various battle conditions is essential. In this paper, we propose a virtual target overlay technique which does not use a virtual image, but Projects a virtual target on ground-based CCD image by appointed scenario for a realistic training simulation. In the proposed method, we create a realistic 3D model (for an instructor) by using high resolution Geographic Tag Image File Format(GeoTIFF) satellite image and Digital Terrain Elevation Data (DTED), and extract the road area from a given CCD image (for both an instructor and a trainee). Satellite images and ground-based sensor images have many differences in observation position, resolution, and scale, thus yielding many difficulties in feature-based matching. Hence, we propose a moving synchronization technique that projects the target on the sensor image according to the marked moving path on 3D satellite image by applying Thin-Plate Spline(TPS) interpolation function, which is an image warping function, on the two given sets of corresponding control point pair. To show the experimental result of the proposed method, we employed two Pentium4 1.8MHz personal computer systems equipped with 512MBs of RAM, and the satellite and sensor images of Daejoen area are also been utilized. The experimental result revealed the effective-ness of proposed algorithm.

2D/3D image Conversion Method using Simplification of Level and Reduction of Noise for Optical Flow and Information of Edge (Optical flow의 레벨 간소화 및 노이즈 제거와 에지 정보를 이용한 2D/3D 변환 기법)

  • Han, Hyeon-Ho;Lee, Gang-Seong;Lee, Sang-Hun
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.13 no.2
    • /
    • pp.827-833
    • /
    • 2012
  • In this paper, we propose an improved optical flow algorithm which reduces computational complexity as well as noise level. This algorithm reduces computational time by applying level simplification technique and removes noise by using eigenvectors of objects. Optical flow is one of the accurate algorithms used to generate depth information from two image frames using the vectors which track the motions of pixels. This technique, however, has disadvantage of taking very long computational time because of the pixel-based calculation and can cause some noise problems. The level simplifying technique is applied to reduce the computational time, and the noise is removed by applying optical flow only to the area of having eigenvector, then using the edge image to generate the depth information of background area. Three-dimensional images were created from two-dimensional images using the proposed method which generates the depth information first and then converts into three-dimensional image using the depth information and DIBR(Depth Image Based Rendering) technique. The error rate was obtained using the SSIM(Structural SIMilarity index).

Development of Stereo PACS Viewer for the 3-D Endoscopic Image

  • Kim, Jeonghoon;Lee, Junyoung;Lee, Sungjae;Lee, Myoungho
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2001.10a
    • /
    • pp.181.2-181
    • /
    • 2001
  • Stereo PACS (Picture Archiving and Communication System) is not available yet because of some limitations of medical stereo image software and viewing devices. As a stereo PACS viewer, we designed two functions. One is selecting and viewing a multiplexed stereo image directly, and the other is selecting a stereo pair image (left and right sides both) and merging the stereo pair image into a multiplexed image in software. For the medical image compression of 3-D stereo endoscopic images, we used JPEG and Wavelet compression and to determine an acceptable compression rate using PSNR (Peak Signal-to-Noise Ratio). As a result, we got the conclusion that medically acceptable image compression rate should have the PSNR of above about 40[dB] (JPEG (5:1), Wavelet (10:1)).

  • PDF

3D Image Processing System for an Robotic Milking System (로봇 착유기를 위한 3차원 위치정보획득 시스템)

  • Kim, W.;Kwon, D.J.;Seo, K.W.;Lee, D.W.
    • Journal of Animal Environmental Science
    • /
    • v.8 no.3
    • /
    • pp.165-170
    • /
    • 2002
  • This study was carried out to measure the 3D-distance of a cow model teat for an application possibility on Robotic Milking System(RMS). A teat recognition algorithm was made to find 3D-distance of the model by using Gonzalrez's theory. Some of the results are as follows. 1 . In the distance measurement experiment on the test board, as the measured length, and the length between the center of image surface and the measured image point became longer, their error values increased. 2. The model teat was installed and measured the error value at the random position. The error value of X and Y coordinates was less than 5㎜, and that of Z coordinates was less than 20㎜. The error value increased as the distance of camera's increased. 3. The equation for distance information acquirement was satisfied with obtaining accurate distance that was necessary for a milking robot to trace teats, A teat recognition algorithm was recognized well four model cow teats. It's processing time was about 1 second. It appeared that a teat recognition algorithm could be used to determine the 3D-distance of the cow teat to develop a RMS.

  • PDF

Multi-Focusing Image Capture System for 3D Stereo Image (3차원 영상을 위한 다초점 방식 영상획득장치)

  • Ham, Woon-Chul;Kwon, Hyeok-Jae;Enkhbaatar, Tumenjargal
    • The Journal of Korea Robotics Society
    • /
    • v.6 no.2
    • /
    • pp.118-129
    • /
    • 2011
  • In this paper, we suggest a new camera capturing and synthesizing algorithm with the multi-captured left and right images for the better comfortable feeling of 3D depth and also propose 3D image capturing hardware system based on the this new algorithm. We also suggest the simple control algorithm for the calibration of camera capture system with zooming function based on a performance index measure which is used as feedback information for the stabilization of focusing control problem. We also comment on the theoretical mapping theory concerning projection under the assumption that human is sitting 50cm in front of and watching the 3D LCD screen for the captured image based on the modeling of pinhole Camera. We choose 9 segmentations and propose the method to find optimal alignment and focusing based on the measure of alignment and sharpness and propose the synthesizing fusion with the optimized 9 segmentation images for the best 3D depth feeling.

Development of the Computer Vision based Continuous 3-D Feature Extraction System via Laser Structured Lighting (레이저 구조광을 이용한 3차원 컴퓨터 시각 형상정보 연속 측정 시스템 개발)

  • Im, D. H.;Hwang, H.
    • Journal of Biosystems Engineering
    • /
    • v.24 no.2
    • /
    • pp.159-166
    • /
    • 1999
  • A system to extract continuously the real 3-D geometric fearture information from 2-D image of an object, which is fed randomly via conveyor has been developed. Two sets of structured laser lightings were utilized. And the laser structured light projection image was acquired using the camera from the signal of the photo-sensor mounted on the conveyor. Camera coordinate calibration matrix was obtained, which transforms 2-D image coordinate information into 3-D world space coordinate using known 6 points. The maximum error after calibration showed 1.5 mm within the height range of 103mm. The correlation equation between the shift amount of the laser light and the height was generated. Height information estimated after correlation showed the maximum error of 0.4mm within the height range of 103mm. An interactive 3-D geometric feature extracting software was developed using Microsoft Visual C++ 4.0 under Windows system environment. Extracted 3-D geometric feature information was reconstructed into 3-D surface using MATLAB.

  • PDF

The Search of Image Outline Using 3D Viewpoint Change (3차원 시점 변화를 활용한 이미지 외곽라인 검색 제안)

  • Kim, Sungkon
    • The Journal of the Convergence on Culture Technology
    • /
    • v.5 no.3
    • /
    • pp.283-288
    • /
    • 2019
  • We propose a method to search for similar images by using outline lines and viewpoints. In the first test, the three-dimensional image, which can't control the motion, has lower search accuracy than the static flat image. For the cause analysis, six specific tropical fish data were selected. We made a 3D graphics of tropical fishes of each kind, and we made 144 image outline lines with 12 stage viewpoints of top, bottom, left and right. Tropical fish by type were collected and sorted by time of search through similar search. Studies have shown that there are many unique viewpoints for each species of tropical fish. To increase the accuracy of the search, a User Interface was created to select the user's point of view. When the user selects the viewpoint of the image, a method of showing the result in consideration of the range of the related viewpoint is proposed.