• Title/Summary/Keyword: Texture segmentation

Search Result 177, Processing Time 0.033 seconds

A Watershed-based Texture Segmentation Method Using Marker Clustering (마커 클러스터링을 이용한 유역변환 기반의 질감 분할 기법)

  • Hwang, Jin-Ho;Kim, Won-Hee;Moon, Kwang-Seok;Kim, Jong-Nam
    • Journal of Korea Multimedia Society
    • /
    • v.10 no.4
    • /
    • pp.441-449
    • /
    • 2007
  • In clustering for image segmentation, large amount of computation and typical segmentation errors have been important problems. In the paper, we suggest a new method for minimizing these problems. Markers in marker-controlled watershed transform represent segmented areas because they are starting-points of extending areas. Thus, clustering restricted by marker pixels can reduce computational complexity. In our proposed method, the markers are selected by Gabor texture energy, and cluster information of them are generated by FCM (fuzzy c-mean) clustering. Generated areas from watershed transform are merged by using cluster information of markers. In the test of Brodatz' texture images, we improved typical partition-errors obviously and obtained less computational complexity compared with previous FCM clustering algorithms. Overall, it also took regular computational time.

  • PDF

Color Image Segmentation Based on Edge Salience Map and Region Merging (경계 중요도 맵 및 영역 병합에 기반한 칼라 영상 분할)

  • Kim, Sung-Young
    • Journal of the Korea Society of Computer and Information
    • /
    • v.12 no.3
    • /
    • pp.105-113
    • /
    • 2007
  • In this paper, an image segmentation method which is based on edge salience map and region merging is presented. The edge salience map is calculated by combining a texture edge map with a color edge map. The texture edge map is computed over multiple spatial orientations and frequencies by using Gabor filter. A color edge is computed over the H component of the HSI color model. Then the Watershed transformation technique is applied to the edge salience map to and homogeneous regions where the dissimilarity of color and texture distribution is relatively low. The Watershed transformation tends to over-segment images. To merge the over-segmented regions, first of all, morphological operation is applied to the edge salience map to enhance a contrast of it and also to find mark regions. Then the region characteristics, a Gabor texture vector and a mean color, in the segmented regions is defined and regions that have the similar characteristics, are merged. Experimental results have demonstrated the superiority in segmentation results for various images.

  • PDF

Multiple Texture Image Recognition with Unsupervised Block-based Clustering (비교사 블록-기반 군집에 의한 다중 텍스쳐 영상 인식)

  • Lee, Woo-Beom;Kim, Wook-Hyun
    • The KIPS Transactions:PartB
    • /
    • v.9B no.3
    • /
    • pp.327-336
    • /
    • 2002
  • Texture analysis is an important technique in many image understanding areas, such as perception of surface, object, shape and depth. But the previous works are intend to the issue of only texture segment, that is not capable of acquiring recognition information. No unsupervised method is basased on the recognition of texture in image. we propose a novel approach for efficient texture image analysis that uses unsupervised learning schemes for the texture recognition. The self-organization neural network for multiple texture image identification is based on block-based clustering and merging. The texture features used are the angle and magnitude in orientation-field that might be different from the sample textures. In order to show the performance of the proposed system, After we have attempted to build a various texture images. The final segmentation is achieved by using efficient edge detection algorithm applying to block-based dilation. The experimental results show that the performance of the system Is very successful.

Support Vector Machine Based Diagnostic System for Thyroid Cancer using Statistical Texture Features

  • Gopinath, B.;Shanthi, N.
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.14 no.1
    • /
    • pp.97-102
    • /
    • 2013
  • Objective: The aim of this study was to develop an automated computer-aided diagnostic system for diagnosis of thyroid cancer pattern in fine needle aspiration cytology (FNAC) microscopic images with high degree of sensitivity and specificity using statistical texture features and a Support Vector Machine classifier (SVM). Materials and Methods: A training set of 40 benign and 40 malignant FNAC images and a testing set of 10 benign and 20 malignant FNAC images were used to perform the diagnosis of thyroid cancer. Initially, segmentation of region of interest (ROI) was performed by region-based morphology segmentation. The developed diagnostic system utilized statistical texture features derived from the segmented images using a Gabor filter bank at various wavelengths and angles. Finally, the SVM was used as a machine learning algorithm to identify benign and malignant states of thyroid nodules. Results: The SVMachieved a diagnostic accuracy of 96.7% with sensitivity and specificity of 95% and 100%, respectively, at a wavelength of 4 and an angle of 45. Conclusion: The results show that the diagnosis of thyroid cancer in FNAC images can be effectively performed using statistical texture information derived with Gabor filters in association with an SVM.

Texture Classification Based on Gabor-like Feature (유사 가버 특징에 기반한 텍스쳐 분류)

  • Son, Ji-Hoon;Kim, Sung-Young
    • The Journal of Korea Institute of Information, Electronics, and Communication Technology
    • /
    • v.10 no.2
    • /
    • pp.147-153
    • /
    • 2017
  • Efficient texture representation is very important in computer vision fields. The performance of texture classification or/and segmentation can be improved based on efficient texture representation. Gabor filter is a representation method that has long history for texture representation based on multi-scale analysis. Gabor filter shows good performance in texture classification and segmentation but requires much processing time. In this paper, we propose new texture representation method that is also based on multi-scale analysis. The proposed representation can provide similar performance in texture classification but can reduce processing time against Gabor filter. Experimental results show good performance of our method.

Color Image Segmentation for Region-Based Image Retrieval (영역기반 이미지 검색을 위한 칼라 이미지 세그멘테이션)

  • Whang, Whan-Kyu
    • Journal of the Institute of Electronics Engineers of Korea CI
    • /
    • v.45 no.1
    • /
    • pp.11-24
    • /
    • 2008
  • Region-based image retrieval techniques, which divide image into similar regions having similar characteristics and examine similarities among divided regions, were proposed to support an efficient low-dimensional color indexing scheme. However, color image segmentation techniques are required additionally. The problem of segmentation is difficult because of a large variety of color and texture. It is known to be difficult to identify image regions containing the same color-texture pattern in natural scenes. In this paper we propose an automatic color image segmentation algorithm. The colors in each image are first quantized to reduce the number of colors. The gray level of image representing the outline edge of image is constructed in terms of Fisher's multi-class linear discriminant on quantized images. The gray level of image is transformed into a binary edge image. The edge showing the outline of the binary edge image links to the nearest edge if disconnected. Finally, the final segmentation image is obtained by merging similar regions. In this paper we design and implement a region-based image retrieval system using the proposed segmentation. A variety of experiments show that the proposed segmentation scheme provides good segmentation results on a variety of images.

Segmentation and Contents Classification of Document Images Using Local Entropy and Texture-based PCA Algorithm (지역적 엔트로피와 텍스처의 주성분 분석을 이용한 문서영상의 분할 및 구성요소 분류)

  • Kim, Bo-Ram;Oh, Jun-Taek;Kim, Wook-Hyun
    • The KIPS Transactions:PartB
    • /
    • v.16B no.5
    • /
    • pp.377-384
    • /
    • 2009
  • A new algorithm in order to classify various contents in the image documents, such as text, figure, graph, table, etc. is proposed in this paper by classifying contents using texture-based PCA, and by segmenting document images using local entropy-based histogram. Local entropy and histogram made the binarization of image document not only robust to various transformation and noise, but also easy and less time-consuming. And texture-based PCA algorithm for each segmented region was taken notice of each content in the image documents having different texture information. Through this, it was not necessary to establish any pre-defined structural information, and advantages were found from the fact of fast and efficient classification. The result demonstrated that the proposed method had shown better performances of segmentation and classification for various images, and is also found superior to previous methods by its efficiency.

Variable Block Size Transform Coding Using Segmented Information (영역 분할 정보를 이용한 가변 블록 크기 변환 부호화)

  • 오정수;김진태;최종수
    • Journal of the Korean Institute of Telematics and Electronics B
    • /
    • v.31B no.1
    • /
    • pp.72-80
    • /
    • 1994
  • In this paper, a new variable block-size transform coding algorithm using information of segmentation is proposed. In general variable block-size transform coding algorithms, the information which is used to form variable blocks is thrown away, but in the proposed algorithm, the information of segmentation which is composed of texture and contour information is maintained for efficient coding. That is, the number of blocks can be reduced by contour information, a DC component of block can be predicted by texture information, and the region compensation, which reduces mean difference between regions, using texture and contour information can diminish the magnitude of AC components. The result is that the proposed algorithm has improved highly the coding efficiency of DC and AC components.

  • PDF

A Segmentation Technique of Textured Images Using Conditional 1-D Histograms (조건부 1차원 히스토그램을 이용한 Texture 영상 분할)

  • 양형렬;이정환;김성대
    • Journal of the Korean Institute of Telematics and Electronics
    • /
    • v.27 no.4
    • /
    • pp.580-589
    • /
    • 1990
  • This paper describes an efficient method of texture image segmentation based on conditional 1-dimensional histograms. We consider the multi-dimensional histogram, and it is projected into each axis in order to obtain conditional 1-dimensional histograms. And we extract uniform regions by iteratively applying the peak-valley detection method to conditional 1-dimensional histograms. In view of the amount of memory and computation time, the proposed method is superior to the conventional method which uses the multi-dimensional histogram. By applying the proposed method to the artificial and natural texture images some desirable results are obtained.

  • PDF

Color Image Coding Based on Shape-Adaptive All Phase Biorthogonal Transform

  • Wang, Xiaoyan;Wang, Chengyou;Zhou, Xiao;Yang, Zhiqiang
    • Journal of Information Processing Systems
    • /
    • v.13 no.1
    • /
    • pp.114-127
    • /
    • 2017
  • This paper proposes a color image coding algorithm based on shape-adaptive all phase biorthogonal transform (SA-APBT). This algorithm is implemented through four procedures: color space conversion, image segmentation, shape coding, and texture coding. Region-of-interest (ROI) and background area are obtained by image segmentation. Shape coding uses chain code. The texture coding of the ROI is prior to the background area. SA-APBT and uniform quantization are adopted in texture coding. Compared with the color image coding algorithm based on shape-adaptive discrete cosine transform (SA-DCT) at the same bit rates, experimental results on test color images reveal that the objective quality and subjective effects of the reconstructed images using the proposed algorithm are better, especially at low bit rates. Moreover, the complexity of the proposed algorithm is reduced because of uniform quantization.