• Title/Summary/Keyword: Texture recognition

Search Result 184, Processing Time 0.027 seconds

A scheme of extracting age-related wrinkle feature and skin age based on dermoscopic images (피부 현미경 영상을 통한 피부 특징 추출 및 피부 나이 도출 기법)

  • Choi, Young-Hwan;Hwang, Een-Jun
    • Journal of IKEEE
    • /
    • v.14 no.4
    • /
    • pp.332-338
    • /
    • 2010
  • Usually, mage feature extraction methods are performed as a pre-processing step in many applications including image retrieval, object recognition, and image indexing. Especially, in the image texture analysis, texture feature extraction methods attempt to increase texture contrast to make it easier to extract the texture features from the image. One of the distinct textures in microscopic skin image is the wrinkle, and its features could provide various useful information for the age-related applications. In this paper, we propose a scheme to extract age-related features from the skin images and improve its accuracy in the skin age estimation.

Fast Face Gender Recognition by Using Local Ternary Pattern and Extreme Learning Machine

  • Yang, Jucheng;Jiao, Yanbin;Xiong, Naixue;Park, DongSun
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.7 no.7
    • /
    • pp.1705-1720
    • /
    • 2013
  • Human face gender recognition requires fast image processing with high accuracy. Existing face gender recognition methods used traditional local features and machine learning methods have shortcomings of low accuracy or slow speed. In this paper, a new framework for face gender recognition to reach fast face gender recognition is proposed, which is based on Local Ternary Pattern (LTP) and Extreme Learning Machine (ELM). LTP is a generalization of Local Binary Pattern (LBP) that is in the presence of monotonic illumination variations on a face image, and has high discriminative power for texture classification. It is also more discriminate and less sensitive to noise in uniform regions. On the other hand, ELM is a new learning algorithm for generalizing single hidden layer feed forward networks without tuning parameters. The main advantages of ELM are the less stringent optimization constraints, faster operations, easy implementation, and usually improved generalization performance. The experimental results on public databases show that, in comparisons with existing algorithms, the proposed method has higher precision and better generalization performance at extremely fast learning speed.

Detection and Recognition of Vehicle License Plates using Deep Learning in Video Surveillance

  • Farooq, Muhammad Umer;Ahmed, Saad;Latif, Mustafa;Jawaid, Danish;Khan, Muhammad Zofeen;Khan, Yahya
    • International Journal of Computer Science & Network Security
    • /
    • v.22 no.11
    • /
    • pp.121-126
    • /
    • 2022
  • The number of vehicles has increased exponentially over the past 20 years due to technological advancements. It is becoming almost impossible to manually control and manage the traffic in a city like Karachi. Without license plate recognition, traffic management is impossible. The Framework for License Plate Detection & Recognition to overcome these issues is proposed. License Plate Detection & Recognition is primarily performed in two steps. The first step is to accurately detect the license plate in the given image, and the second step is to successfully read and recognize each character of that license plate. Some of the most common algorithms used in the past are based on colour, texture, edge-detection and template matching. Nowadays, many researchers are proposing methods based on deep learning. This research proposes a framework for License Plate Detection & Recognition using a custom YOLOv5 Object Detector, image segmentation techniques, and Tesseract's optical character recognition OCR. The accuracy of this framework is 0.89.

Image Analysis of Diffuse Liver Disease using Computer-Adided Diagnosis in the Liver US Image (간 초음파영상에서 컴퓨터보조진단을 이용한 미만성 간질환의 영상분석)

  • Lee, Jinsoo;Kim, Changsoo
    • Journal of the Korean Society of Radiology
    • /
    • v.9 no.4
    • /
    • pp.227-234
    • /
    • 2015
  • In this paper, we studied possibility about application for CAD on diffuse liver disease through pixel texture analysis parameters(average gray level, skewness, entropy) which based statistical property brightness histogram and image analysis using brightness difference liver and kidney parenchyma. The experiment was set by ROI ($50{\times}50$ pixels) on liver ultrasound images.(non specific, fatty liver, liver cirrhosis) then, evaluated disease recognition rates using 4 types pixel texture analysis parameters and brightness gap liver and kidney parenchyma. As a results, disease recognition rates which contained average brightness, skewness, uniformity, entropy was scored 100%~96%, they were high. In brightness gap between liver and kidney parenchyma, non specific was $-1.129{\pm}12.410$ fatty liver was $33.182{\pm}11.826$, these were shown significantly difference, but liver cirrhosis was $-1.668{\pm}10.081$, that was somewhat small difference with non specific case. Consequently, pixel texture analysis parameter which scored high disease recognition rates and CAD which used brightness difference of parenchyma are very useful for detecting diffuse liver disease as well as these are possible to use clinical technique and minimize reading miss. Also, it helps to suggest correct diagnose and treatment.

Texture Classification Using Rotation Invariant Local Directional Pattern (Rotation Invariant Local Directional Pattern을 이용한 텍스처 분류 방법)

  • Lee, Tae Hwan;Chae, Ok Sam
    • Convergence Security Journal
    • /
    • v.17 no.3
    • /
    • pp.21-29
    • /
    • 2017
  • Accurate encoding of local patterns is a very important factor in texture classification. However, LBP based methods w idely studied have fundamental problems that are vulnerable to noise. Recently, LDP method using edge response and dire ction information was proposed in facial expression recognition. LDP is more robust to noise than LBP and can accommod ate more information in it's pattern code, but it has drawbacks that it is sensitive to rotation transforms that are critical to texture classification. In this paper, we propose a new local pattern coding method called Rotation Invariant Local Direc tional Pattern, which combines rotation-invariant transform to LDP. To prove the texture classification performance of the proposed method in this paper, texture classification was performed on the widely used UIUC and CUReT datasets. As a result, the proposed RILDP method showed better performance than the existing methods.

A Study of Evaluation of the Feature from Cooccurrence Matrix and Appropriate Applicable Resolution (공기행렬의 질감특성치들에 대한 평가와 적정 적용해상도에 관한 연구)

  • Kwon, Oh-Hyoung;Kim, Yong-Il;Eo, Yang-Dam
    • Journal of Korean Society for Geospatial Information Science
    • /
    • v.8 no.1 s.15
    • /
    • pp.105-110
    • /
    • 2000
  • Since the advent of high resolution satellite image, possibilities of applying various human interpretation mechanism to these images have increased. Also many studies about these possibilities in many fields such as computer vision, pattern recognition, artificial intellegence and remote sensing have been done. In this field of these studies, texture is defined as a kind of quantity related to spatial distribution of brightness and tone and also plays an important role for interpretation of images. Especially, methods of obtaining texture by statistical model have been studied intensively. Among these methods, texture measurement method based on cooccurrence matrix is highly estimated because it is easy to calculate texture features compared with other methods. In addition, these results in high classification accuracy when this is applied to satellite images and aerial photos. But in the existing studies using cooccurrence matrix, features have been chosen arbitrarily without considering feature variation. And not enough studies have been implemented for appropriate resolution selection in which cooccurrence matrix can extract texture. Therefore, this study reviews the concept of cooccurrence matrix as a texture measurement method, evaluates usefulness of several features obtained from cooccurrence matrix, and proposes appropriate resolution by investigating variance trend of several features.

  • PDF

Face Illumination Normalization based on Illumination-Separated Face Identity Texture Subspace (조명영향 분리 얼굴 고유특성 텍스쳐 부분공간 기반 얼굴 이미지 조명 정규화)

  • Choi, Jong-Keun;Chung, Sun-Tae;Cho, Seong-Won
    • Journal of the Institute of Electronics Engineers of Korea SP
    • /
    • v.47 no.1
    • /
    • pp.25-34
    • /
    • 2010
  • Robust face recognition under various illumination environments is difficult to achieve. For robust face recognition with respect to illumination variations, illumination normalization of face images is usually applied as a preprocessing step. Most of previously proposed illumination normalization methods cannot handle cast shadows in face images effectively. In this paper, We propose a new face illumination normalization method based on the illumination-separated face identity texture subspace. Since the face identity texture subspace is constructed so as to be separated from the effects of illumination variations, the projection of face images into the subspace produces a good illumination-normalized face images. Through experiments, it is shown that the proposed face illumination normalization method can effectively eliminate cast shadows as well as attached shadows and achieves a good face illumination normalization.

Reconstruction of High-Resolution Facial Image Based on Recursive Error Back-Projection of Top-Down Machine Learning (하향식 기계학습의 반복적 오차 역투영에 기반한 고해상도 얼굴 영상의 복원)

  • Park, Jeong-Seon;Lee, Seong-Whan
    • Journal of KIISE:Software and Applications
    • /
    • v.34 no.3
    • /
    • pp.266-274
    • /
    • 2007
  • This paper proposes a new reconstruction method of high-resolution facial image from a low-resolution facial image based on top-down machine learning and recursive error back-projection. A face is represented by a linear combination of prototypes of shape and that of texture. With the shape and texture information of each pixel in a given low-resolution facial image, we can estimate optimal coefficients for a linear combination of prototypes of shape and those that of texture by solving least square minimizations. Then high-resolution facial image can be obtained by using the optimal coefficients for linear combination of the high-resolution prototypes. In addition, a recursive error back-projection procedure is applied to improve the reconstruction accuracy of high-resolution facial image. The encouraging results of the proposed method show that our method can be used to improve the performance of the face recognition by applying our method to reconstruct high-resolution facial images from low-resolution images captured at a distance.

3D Depth Measurement System-based Unpaved Trail Recognition for Mobile Robots (이동 로봇을 위한 3차원 거리 측정 장치기반 비포장 도로 인식)

  • Gim Seong-Chan;Kim Jong-Man;Kim Hyong-Suk
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.12 no.4
    • /
    • pp.395-399
    • /
    • 2006
  • A method to recognize unpaved road region using a 3D depth measurement system is proposed for mobile robots. For autonomous maneuvering of mobile robots, recognition of obstacles or recognition of road region is the essential task. In this paper, the 3D depth measurement system which is composed of a rotating mirror, a line laser and mono-camera is employed to detect depth, where the laser light is reflected by the mirror and projected to the scene objects whose locations are to be determined. The obtained depth information is converted into an image. Such depth images of the road region represent even and plane while that of off-road region is irregular or textured. Therefore, the problem falls into a texture identification problem. Road region is detected employing a simple spatial differentiation technique to detect the plain textured area. Identification results of the diverse situation of unpaved trail are included in this paper.

Infrared Target Recognition using Heterogeneous Features with Multi-kernel Transfer Learning

  • Wang, Xin;Zhang, Xin;Ning, Chen
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.14 no.9
    • /
    • pp.3762-3781
    • /
    • 2020
  • Infrared pedestrian target recognition is a vital problem of significant interest in computer vision. In this work, a novel infrared pedestrian target recognition method that uses heterogeneous features with multi-kernel transfer learning is proposed. Firstly, to exploit the characteristics of infrared pedestrian targets fully, a novel multi-scale monogenic filtering-based completed local binary pattern descriptor, referred to as MSMF-CLBP, is designed to extract the texture information, and then an improved histogram of oriented gradient-fisher vector descriptor, referred to as HOG-FV, is proposed to extract the shape information. Second, to enrich the semantic content of feature expression, these two heterogeneous features are integrated to get more complete representation for infrared pedestrian targets. Third, to overcome the defects, such as poor generalization, scarcity of tagged infrared samples, distributional and semantic deviations between the training and testing samples, of the state-of-the-art classifiers, an effective multi-kernel transfer learning classifier called MK-TrAdaBoost is designed. Experimental results show that the proposed method outperforms many state-of-the-art recognition approaches for infrared pedestrian targets.