• Title/Summary/Keyword: Texture properties

Search Result 2,130, Processing Time 0.024 seconds

Rheological Properties of White Bread Supplemented with Ligularia stenocephala Leaf Powder and Its Sensory Characteristics according to Survey Panel Members (곤달비 분말이 첨가된 식빵의 물성 및 패널요원에 따른 관능적 특성)

  • Jung In-Chang
    • The Korean Journal of Food And Nutrition
    • /
    • v.19 no.2
    • /
    • pp.207-218
    • /
    • 2006
  • This study was designed to investigate the possible utilization of Ligularia stenocephala as a source of functional ingredients in white bread. In terms of color values, as more Ligularia stenocephala leaf powder was added, 'lightness,' 'redness,' and 'yellowness' decreased in the crust, while in the bread crumb 'lightness' and 'yellowness' decreased, but 'redness' increased. When 5.0%, 7.5%, or 10.0% Ligularia stenocephala leaf powder was substituted for an equivalent amount of strong flour, the ratio of the volume and specific volume of white bread decreased while its weight increased. In the texture measurements for the white breads, the hardness decreased slightly with the addition of 2.5% Ligularia stenocephala leaf powder, but increased with the addition of 5.0%, 7.5%, or 10.0% Ligularia stenocephala leaf powder. The addition of the Ligularia stenocephala leaf powder also increased the springiness and gumminess of the white bread. The highest sensory scores for color, flavor, taste, texture, and overall acceptance for both the student group and the baker group were obtained from white bread with 5.0% Ligularia stenocephala leaf powder. The highest sensory scores for the housewife group for taste, texture, and overall acceptance were obtained from control bread. Through the results of these experiments, we conclude that the highest quantity of Ligularia stenocephala leaf powder content should be no more than 5.0% when making bread with added Ligularia stenocephala leaf powder.

Improved Physicochemical Properties of Pork Patty Supplemented with Oil-in-Water Nanoemulsion

  • Lee, Jiseon;Kim, Honggyun;Choi, Mi-Jung;Cho, Youngjae
    • Food Science of Animal Resources
    • /
    • v.40 no.2
    • /
    • pp.262-273
    • /
    • 2020
  • This study aimed to investigate the effect of nanoemulsion (NEM) on the physicochemical and sensory characteristics of pork patty to improve texture for elderly members of the population. Hence, we prepared pork patties supplemented with different of liquid materials: water; oil and water; oil, water, and surfactants; and nanoemulsion. The emulsion itself was characterized and the physicochemical properties of the pork patties, including pH, water content, cooking loss, thawing loss, liquid holding capacity, color, and texture, were analyzed. The size of NEM was 165.70±9.32 nm and NEM had high ζ-potential value indicating that it is stable. NEM patties had the lowest cooking and thawing losses, and the highest liquid retention, all of which affected the tenderness of the patties. Color of the patty was also affected by the addition of NEM. The highest lightness and yellowness and the lowest redness were observed (p<0.05). NEM patties had the lowest values for all texture attributes indicating improved tenderness. Our results demonstrate that NEM has positive effects on pork patties and can help to tenderize food products designed for the elderly. With further study, NEM could be a candidate tenderization agent in the meat industry.

Study of texture, mechanical and electrical properties of cold drawn AGS alloy wire

  • Zidani, M.;Bessais, L.;Farh, H.;Hadid, M.D.;Messaoudi, S.;Miroud, D.;Loudjani, M.K.;Helbert, A.L.;Baudin, T.
    • Steel and Composite Structures
    • /
    • v.22 no.4
    • /
    • pp.745-752
    • /
    • 2016
  • An investigation has been done to study the evolution of the microstructure, mechanical and electrical properties of AlMgSi alloy destined for the transport of electric energy, in function of the deformation caused by the cold drawing process. We identified that drawing of aluminum wire causes development of a fibrous texture of type <111> and <100>. We notice also that the electrical resistivity and mechanical resistance increases with the increasing of the deformation level. Characterization methods used in this work is: The Electron Back Scattered Diffraction EBSD, X-Ray diffraction, Vickers microhardness, Tensile test, Measuring electrical resistivity, the Scanning Electron Microscope (SEM) and Energy Diffraction Spectrum (EDS).

Changes in Puffer Fish Quality Induced by Soak Time in Maturing Water during Maturation of Puffer Fish Prepared via the Cutting Cranial Nerve Method (MSK Method) (뇌신경절단법(MSK법)으로 치사한 활어복의 숙성시 숙성수 침지시간에 따른 어육의 품질변화)

  • Mun, Seung-Kwon;Yoo, Seung-Seok
    • Korean journal of food and cookery science
    • /
    • v.26 no.4
    • /
    • pp.428-433
    • /
    • 2010
  • The aim of this research was to determine the relationship between quality of puffer fish and soak time in maturing water. This research used the cutting cranial nerve method, which is called the MSK method. The data was analyzed using the SPSS program. Based on salinity analysis result, both moisture content and pH were measured after 20 min of soaking. As the salinity of the maturing water increased, the moisture content initially decreased then increased once the salinity was greater than 3%. However, the concentration of the maturing water did not influence the pH level. The texture properties were measured to assess the effect of soak time in the maturing water. Hardness of the sample was highest (3.99) at 20 min, and cohesiveness also showed a maximum value (0.26) at 20 min. Gumminess and chewiness were highest 1.04 and 4.09, respectively, when the fish was matured for 20 min. Sensory properties were evaluated, and springiness, umami flavor, texture, and overall preference were highest at 20 min of soak time. The results showed that maturing the puffer fish for 20 min provided the best quality of texture and sensory characteristics for the fish.

Assessment of Soil Compaction Related to the Bulk Density with Land use Types on Arable Land

  • Cho, Hee-Rae;Jung, Kang-Ho;Zhang, Yong-Seon;Han, Kyung-Hwa;Roh, Ahn-Sung;Cho, Kwang-Rae;Lim, Soo-Jeong;Choi, Seung-Chul;Lee, Jin-Il;Yun, Yeo-Uk;Ahn, Byoung-Gu;Kim, Byeong-Ho;Park, Jun-Hong;Kim, Chan-Yong;Park, Sang-Jo
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.46 no.5
    • /
    • pp.333-342
    • /
    • 2013
  • Soil compaction is affected by soil texture, organic matter (OM), strength (ST) and soil moisture, which is difficult to understand the degree and effects of related factors. The purpose of the study is to assess the impact of them on the compaction with bulk density (BD). The analysis was conducted with data collected from national-wide monitoring sites including 105 upland soils, 246 orchard soils, and 408 paddy soils between 2009 and 2012. The distributions of soil physical properties were measured. The correlation and multi linear regression analysis were performed between soil physical properties using SAS. The regression equation of BD(y) includes ST, gravitational water contents (GWC), and OM as variables commonly, having additional factors, clay content and sand content in paddy soil and upland soil for only subsoil (p<0.001). Our results show that the BD could be explained about 40~50% by various physical properties. The regression was mainly determined by ST in orchard and upland soil and by the GWC in paddy soil. To mitigate soil compaction, it is important to maintain the proper level of OM in upland soil and to consider the moisture condition with soil texture in paddy soil when making work plan. Furthermore, it would be recommended the management criteria classified by soil texture for the paddy soils.

Physicochemical Properties of Mung Bean Starch and Texture of Cold-Stored Mung Bean Starch Gels added with Soy Bean Oil (대두유 첨가가 녹두전분의 이화학적 특성과 저온저장 녹두전분겔의 텍스쳐에 미치는 영향)

  • Choi, Eun-Jung;Oh, Myung-Suk
    • Journal of the Korean Society of Food Culture
    • /
    • v.26 no.5
    • /
    • pp.513-520
    • /
    • 2011
  • This study was carried out to investigate the physicochemical properties of mung bean starch and the texture of cold-stored (5$^{\circ}C$ for 0, 24, 48, and 72 hours) mung bean starch gels added with soy bean oil (0, 2, 4, 6%). The swelling power of mung bean starch added with soy bean oil did not significantly change, whereas solubility increased significantly. Soluble carbohydrate content of mung bean starch added with soy bean oil decreased without any significant differences, whereas soluble amylose content decreased significantly. In RVA viscosity, pasting temperature and peak viscosity of mung bean starch added with soy bean oil were not significantly different, whereas minimum viscosity decreased and breakdown and consistency increased significantly. In RVA viscosity, there were no differences according to concentration of soy bean oil. DSC thermograms show that onset temperature of mung bean starch added with soy bean oil did not significantly change, whereas the enthalpy increased in the case of 4% and 6% oil addition. Rupture properties of freshly prepared mung bean starch gels added with soy bean oil increased in the case of 2% and 4% oil addition, and oil addition to mung bean starch gels suppressed changes in rupture properties during cold storage. There were no significant differences in the texture of freshly prepared mung bean starch gels added with soy bean oil, whereas hardness, chewiness, and gumminess of cold-stored mung bean starch gels added with soy bean oil decreased. In the above textural charactristics, there were no differences due to concentration of soy bean oil. Thus, the addition of 2-4% soy bean oil to mung bean starch is appropriate for improving the quality characteristics of cold-stored mung bean starch gels.

Study upon the rheological properties and optimiztion of tofu bean products (두부콩들의 물성학적 기능성 비교 및 최적화에 관한 연구)

  • Yoon, Won B.;Hahm, Young T.;Kim, Byung Y.
    • Applied Biological Chemistry
    • /
    • v.40 no.3
    • /
    • pp.225-231
    • /
    • 1997
  • Optimization theory was applied to a native and two imported soybeans. Failure stress and stress relaxation curve was measured with rheometer, and color was measured by colorimeter. The effects of each soybean upon the tofu texture were expressed through a non-linear canonical regression model and trace plot. Compared to the other imported soybeans, native soybean produced a higher strength in tofu texture, and showed the positive increase in viscoelastic properties such as instantaneous stress, equilibrium stress and relaxation time, whereas it had no effect on whiteness from reference blend, represented that native soy-bean showed the individual strength upon the selected rheological texture properties. Higher soaking ability in native soybean was selected as a new response for the optimization mixture process, and it contributed positively to the rheological properties of tofu. New soaking process control system during processing and desirability for the mathematical model should be applied for a better mixture design in varieties of soybeans.

  • PDF

Microstructure and Mechanical Properties of AA6061/AA5052/AA1050 Alloy Fabricated by Cold Roll-Bonding and Subsequently Annealed

  • Seong-Hee Lee;Sang-Hyeon Jo;Jae-Yeol Jeon
    • Korean Journal of Materials Research
    • /
    • v.33 no.11
    • /
    • pp.439-446
    • /
    • 2023
  • Changes in the microstructure and mechanical properties of as-roll-bonded AA6061/AA5052/AA1050 three-layered sheet with increasing annealing temperature were investigated in detail. The commercial AA6061, AA5052 and AA1050 sheets with 2 mm thickness were roll-bonded by multi-pass rolling at ambient temperature. The roll-bonded Al sheets were then annealed for 1 h at various temperatures from 200 to 400 ℃. The specimens annealed up to 250 ℃ showed a typical deformation structure where the grains are elongated in the rolling direction in all regions. However, after annealing at 300 ℃, while AA6061 and AA1050 regions still retained the deformation structure, but AA5052 region changed into complete recrystallization. For all the annealed materials, the fraction of high angle grain boundaries was lower than that of low angle grain boundaries. In addition, while the rolling texture of the {110}<112> and {123}<634> components strongly developed in the AA6061 and AA1050 regions, in the AA5052 region the recrystallization texture of the {100}<001> component developed. After annealing at 350 ℃ the recrystallization texture developed in all regions. The as-rolled material exhibited a relatively high tensile strength of 282 MPa and elongation of 18 %. However, the tensile strength decreased and the elongation increased gradually with the increase in annealing temperature. The changes in mechanical properties with increasing annealing temperature were compared with those of other three-layered Al sheets fabricated in previous studies.

Automated segmentation of concrete images into microstructures: A comparative study

  • Yazdi, Mehran;Sarafrazi, Katayoon
    • Computers and Concrete
    • /
    • v.14 no.3
    • /
    • pp.315-325
    • /
    • 2014
  • Concrete is an important material in most of civil constructions. Many properties of concrete can be determined through analysis of concrete images. Image segmentation is the first step for the most of these analyses. An automated system for segmentation of concrete images into microstructures using texture analysis is proposed. The performance of five different classifiers has been evaluated and the results show that using an Artificial Neural Network classifier is the best choice for an automatic image segmentation of concrete.

Effect of nano-stabilizer on geotechnical properties of leached gypsiferous soil

  • Bahrami, Reza;Khayat, Navid;Nazarpour, Ahad
    • Geomechanics and Engineering
    • /
    • v.23 no.2
    • /
    • pp.103-113
    • /
    • 2020
  • Gypsiferous soils classified as problematic soils due to the dissolution of gypsum. Presence of gypsum in the soils texture subjected to steady flow can cause serious damages for the buildings, roads and water transmission canals. Therefore, researchers have conducted a series of physical, mechanical and microstructural laboratory tests to study the effect of gypsum leaching on the geotechnical properties of a lean clay containing 0%, 3%, 6%, 9%, 12%, and 15% raw gypsum. In addition, a combination of two nano-chemical stabilizers named Terrasil and Zycobond was used in equal proportions to stabilize the gypsiferous clayey samples. The results indicated that gypsum leaching considerably changed the physical and mechanical properties of gypsiferous soils. Further, adding the combination of Terrasil and Zycobond nano-polymeric stabilizers to the gypsiferous soil led to a remarkable reduction in the settlement drop, compressibility, and electrical conductivity (EC) of the water passing through the specimens, resulting in improving the engineering properties of the soil samples. The X-ray diffraction patterns indicate that stabilization by terrasil and zycobond causes formation of new peaks such as CSH and alteration of pure soil structure by adding raw gypsum. Scanning electron microscope (SEM) images show the denser texture of the soil samples due to chemical stabilization and decrease of Si/Al ratio which indicates by Energy dispersive X-ray (EDS) interpretation, proved the enhance of shear strength in stabilized samples.