• 제목/요약/키워드: Texture objects Extraction

검색결과 20건 처리시간 0.02초

자기조직형 최적 가버필터에 의한 다중 텍스쳐 오브젝트 추출 (Multiple Texture Objects Extraction with Self-organizing Optimal Gabor-filter)

  • 이우범;김욱현
    • 정보처리학회논문지B
    • /
    • 제10B권3호
    • /
    • pp.311-320
    • /
    • 2003
  • 고유의 텍스쳐 성분에만 최적 반응을 하는 최적 필터(optimal filter)는 다중 텍스쳐 영상으로부터 원하는 텍스쳐 성분을 추출하기 위한 가장 뛰어난 기술이다. 그러나 기존의 최적필터 설계 방법들은 영상에 내재된 텍스쳐 정보가 사전에 주어지는 교사적 방법이 대부분이며, 내재된 텍스쳐 인식을 기반으로 하는 완전 비교사적인 방법에 관한 연구는 거의 이루어지고 있지 않은 실정이다. 따라서 본 논문에서는 효율적인 텍스쳐 분석을 위한 비교사 학습 방법과 가버필터의 주파수 대역 통과형 특징을 이용한 새로운 최적 필터 설계 방법을 제안한다. 제안한 방법은 자기조직형 신경회로망에 의해서 영상에 내재된 텍스쳐 영역을 블록 단위로 군화(clustering)하며, 가버필터의 최적 주파수는 인식된 텍스쳐 오브젝트(texture objects)의 공간 주파수를 분석한 최적 주파수에 동조(turning)한다. 그리고 설계된 최적 가버필터의 성능 평가를 위해서는 다양한 형태의 다중 텍스쳐 영상을 생성하여 내재된 텍스쳐 오브젝트를 추출함으로써 성공적인 결과를 보인다.

VQ를 이용한 영상의 객체 특징 추출과 이를 이용한 내용 기반 영상 검색 (Representative Feature Extraction of Objects using VQ and Its Application to Content-based Image Retrieval)

  • 장동식;정세환;유헌우;손용준
    • 한국정보과학회논문지:컴퓨팅의 실제 및 레터
    • /
    • 제7권6호
    • /
    • pp.724-732
    • /
    • 2001
  • 내용 기반 영상 검색을 위해 본 연구에서는 VQ(Vector Quantization)을 이용하여 영상을 구성하는 주요 객체들의 특징 추출 방법을 제안한다. 내용 기반 영상 검색 시스템에서 사용되는 영상의 주요특징으로는 색상, 절감, 형태 및 영상을 구성하고 있는 객체들의 공간적 위치 등이 있다. 이 중 본 논문에서는 일반적인 색상 및 질감 특징 추출방법과 더불어 VQ 멕터 클러스터링 알고리즘을 이용하여 정지영상을 구성하고 있는 객체들의 대표 색상과 질감 특징을 빠르게 추출하고 이를 내용 기반 검색에 이용함으로써 정지영상의 내용에 근거한 검색을 하였고 객체 단위 검색을 함으로써 객체의 위치, 회전 및 크기 변화에 무관한 검색을 가능케 했다. 연구의 실험 결과 VQ를 이용함으로써 대표특징치 추출시간을 줄일수 있었고 검색시 색상과 질감 특징의 가중치를 각각 0.5, 0.5로 주는 것이 가장 높은 검출율을 보였으며, ‘사람’영상에 제한한 방법을 적용한 경우 90%의 검출율을 보였다.

  • PDF

내용기반으로한 이미지 검색에서 이미지 객체들의 외형특징추출 (Feature Extraction of Shape of Image Objects in Content-based Image Retrieval)

  • 조준서
    • 정보처리학회논문지B
    • /
    • 제10B권7호
    • /
    • pp.823-828
    • /
    • 2003
  • 이 논문의 주요 목적은 내용을 기반으로 하는 이미지 검색에서 이미지 객체의 외형특징을 추출하는 방법을 제시하는 것이다. 대부분의 실질적인 객체들의 외형은 불규칙적이고, 이러한 객체를 수치화하기위한 일반적인 방법은 없다. 특히 전자 카타로그들은 상품들을 나타내는 많은 이미지를 포함하고 있다. 이 논문에서는 이미지 전체가 아닌 이미지내의 개별 객체들을 기반으로 특징을 추출하는 방법을 제시한다. 왜냐하면 제시된 방법은 한 이미지내에서 RLC lines을 사용하여 각 객체들의 외형을 기반으로하는 방법을 사용하기 때문이다. 실험결과는 일반적으로 가장 많이 사용하는 특징인 Texture와 비교를 했고 제시된 외형을 나타내는 변수들이 전자카타로그의 이미지 객체들을 뚜렷하게 나타냈고, 보다 정확하게 객체들을 분류하고 구별하였다.

드론영상에서 구조요청자 자동추출 방안: 도심지역 촬영영상을 중심으로 (Automatic Extraction of Rescue Requests from Drone Images: Focused on Urban Area Images)

  • 박창민
    • 디지털산업정보학회논문지
    • /
    • 제15권3호
    • /
    • pp.37-44
    • /
    • 2019
  • In this study, we propose the automatic extraction method of Rescue Requests from Drone Images. A central object is extracted from each image by using central object extraction method[7] before classification. A central object in an images are defined as a set of regions that is lined around center of the image and has significant texture distribution against its surrounding. In this case of artificial objects, edge of straight line is often found, and texture is regular and directive. However, natural object's case is not. Such characteristics are extracted using Edge direction histogram energy and texture Gabor energy. The Edge direction histogram energy calculated based on the direction of only non-circular edges. The texture Gabor energy is calculated based on the 24-dimension Gebor filter bank. Maximum and minimum energy along direction in Gabor filter dictionary is selected. Finally, the extracted rescue requestor object areas using the dominant features of the objects. Through experiments, we obtain accuracy of more than 75% for extraction method using each features.

영상 객체의 특징 추출을 이용한 내용 기반 영상 검색 시스템 (Content-Based Image Retrieval System using Feature Extraction of Image Objects)

  • 정세환;서광규
    • 산업경영시스템학회지
    • /
    • 제27권3호
    • /
    • pp.59-65
    • /
    • 2004
  • This paper explores an image segmentation and representation method using Vector Quantization(VQ) on color and texture for content-based image retrieval system. The basic idea is a transformation from the raw pixel data to a small set of image regions which are coherent in color and texture space. These schemes are used for object-based image retrieval. Features for image retrieval are three color features from HSV color model and five texture features from Gray-level co-occurrence matrices. Once the feature extraction scheme is performed in the image, 8-dimensional feature vectors represent each pixel in the image. VQ algorithm is used to cluster each pixel data into groups. A representative feature table based on the dominant groups is obtained and used to retrieve similar images according to object within the image. The proposed method can retrieve similar images even in the case that the objects are translated, scaled, and rotated.

Feature Extraction for Vision Based Micromanipulation

  • Jang, Min-Soo;Lee, Seok-Joo;Park, Gwi-Tae
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 2002년도 ICCAS
    • /
    • pp.41.5-41
    • /
    • 2002
  • This paper presents a feature extraction algorithm for vision-based micromanipulation. In order to guarantee of the accurate micromanipulation, most of micromanipulation systems use vision sensor. Vision data from an optical microscope or high magnification lens have vast information, however, characteristics of micro image such as emphasized contour, texture, and noise are make it difficult to apply macro image processing algorithms to micro image. Grasping points extraction is very important task in micromanipulation because inaccurate grasping points can cause breakdown of micro gripper or miss of micro objects. To solve those problems and extract grasping points for micromanipulation...

  • PDF

Context-free Marker-controlled Watershed Transform for Over-segmentation Reduction

  • Seo, Kyung-Seok;Cho, Sang-Hyun;Park, Chang-Joon;Park, Heung-Moon
    • 대한전자공학회:학술대회논문집
    • /
    • 대한전자공학회 2000년도 ITC-CSCC -1
    • /
    • pp.482-485
    • /
    • 2000
  • A modified watershed transform is proposed which is context-free marker-controlled and minima imposition-free to reduce the over-segmentation and to speedup the transform. In contrast to the conventional methods in which a priori knowledge, such as flat zones, zones of homogeneous texture, and morphological distance, is required for marker extraction, context-free marker extraction is proposed by using the attention operator based on the GST (generalized symmetry transform). By using the context-free marker, the proposed watershed transform exploit marker-constrained labeling to speedup the computation and to reduce the over-segmentation by eliminating the unnecessary geodesic reconstruction such as the minima imposition and thereby eliminating the necessity of the post-processing of region merging. The simulation results show that the proposed method can extract context-free markers inside the objects from the complex background that includes multiple objects and efficiently reduces over-segmentation and computation time.

  • PDF

Multi-Level Segmentation of Infrared Images with Region of Interest Extraction

  • Yeom, Seokwon
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • 제16권4호
    • /
    • pp.246-253
    • /
    • 2016
  • Infrared (IR) imaging has been researched for various applications such as surveillance. IR radiation has the capability to detect thermal characteristics of objects under low-light conditions. However, automatic segmentation for finding the object of interest would be challenging since the IR detector often provides the low spatial and contrast resolution image without color and texture information. Another hindrance is that the image can be degraded by noise and clutters. This paper proposes multi-level segmentation for extracting regions of interest (ROIs) and objects of interest (OOIs) in the IR scene. Each level of the multi-level segmentation is composed of a k-means clustering algorithm, an expectation-maximization (EM) algorithm, and a decision process. The k-means clustering initializes the parameters of the Gaussian mixture model (GMM), and the EM algorithm estimates those parameters iteratively. During the multi-level segmentation, the area extracted at one level becomes the input to the next level segmentation. Thus, the segmentation is consecutively performed narrowing the area to be processed. The foreground objects are individually extracted from the final ROI windows. In the experiments, the effectiveness of the proposed method is demonstrated using several IR images, in which human subjects are captured at a long distance. The average probability of error is shown to be lower than that obtained from other conventional methods such as Gonzalez, Otsu, k-means, and EM methods.

물체 색정보와 예전 제거기록을 활용하는 새로운 그림자 제거방법 (A New Shadow Removal Method using Color Information and History Data)

  • 최혜승;왕아곤;소영성
    • 정보처리학회논문지B
    • /
    • 제12B권4호
    • /
    • pp.395-402
    • /
    • 2005
  • 칼라 교통 영상열에서의 물체 추출을 위해 우선 MOG(Mixture of Gaussians)에 기반한 배경차이 방법을 이용한다. 추출한 물체에는 그림자가 포함되어 있을 수 있다. 이 그림자로 인해 물체의 정확한 위치를 찾기 힘들고 때에 따라서는 옆의 물체와 붙어 버릴 수도 있다 그림자 제거를 위한 여러 가지 방법이 제안되었다. 기존 연구는 대개 칼라나 텍스쳐 성분이 그림자 밑에 유지되고 있는 것으로 가정하였으며 이 가정이 성립하지 않는 경우에는 어려움이 있다. 본 논문에서는 이 가정이 성립하지 않는 경우에도 견고하게 그림자를 제거하는 방법을 제안하였다. 우선 색정보에 기반하여 그림자 화소 후보를 추출하고 전체 물체 크기에 대한 그림자 화소수의 비율을 계산한다. 비율이 적절하면 그림자 화소 후보를 제거하고, 과도하면 예전 제거 기록을 가지고 있는 history way를 활용하여 그림자를 제거한다. 제안된 방법을 실제 칼라 교통 영상열에 적용하여 좋은 결과를 얻었다.

영상 분할을 이용한 객체 기반 집적영상 깊이 추출 (Object-Based Integral Imaging Depth Extraction Using Segmentation)

  • 강진모;정재현;이병호;박재형
    • 한국광학회지
    • /
    • 제20권2호
    • /
    • pp.94-101
    • /
    • 2009
  • 본 논문에서는 집적영상에서 깊이 추출을 할 때 영상 분할 방법을 이용하여 각각의 물체에 대해 삼각형 메쉬(mesh) 모델을 구성하는 방법을 제안하였다. 집적영상에서 렌즈 어레이와 카메라를 이용하여 실제 물체를 픽업하면 요소영상(Elemental image) 집합을 얻을 수 있다. 요소영상 집합은 3차원 물체의 정보를 가지고 있으므로 대응점 분석을 통해 깊이 추출을 할 수 있다. 우선, 각 요소영상 중심점의 대응점 분석을 통해 시차를 구하고 이를 이용하여 깊이를 구한다. 요소영상의 중심점에 해당하는 물체의 X, Y 공간좌표는 각 점들이 사각형 격자 형태를 이룬다. 이 격자 형태의 점들 중에서 가까운 점 3개를 연결하여 삼각형 메쉬를 만들면 물체의 삼각형 메쉬 모델을 구할 수 있다. 이 때 각 물체에 대해 삼각형 메쉬 모델을 구하기 위해서 요소영상의 중심점들로 구성된 가운데 방향별 영상을 영상 분할하고 각각의 분할된 영역에 대해서만 삼각형 메쉬 모델을 구성하였다. 영상 분할 방법은 normalized cut 방법을 이용하였다. 제안된 방법의 검증을 위해 실제 물체를 픽업하고 각 물체의 삼각형 메쉬 모델을 구성하였다.