• Title/Summary/Keyword: Texture features

Search Result 497, Processing Time 0.022 seconds

Object-Based Image Search Using Color and Texture Homogeneous Regions (유사한 색상과 질감영역을 이용한 객체기반 영상검색)

  • 유헌우;장동식;서광규
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.8 no.6
    • /
    • pp.455-461
    • /
    • 2002
  • Object-based image retrieval method is addressed. A new image segmentation algorithm and image comparing method between segmented objects are proposed. For image segmentation, color and texture features are extracted from each pixel in the image. These features we used as inputs into VQ (Vector Quantization) clustering method, which yields homogeneous objects in terns of color and texture. In this procedure, colors are quantized into a few dominant colors for simple representation and efficient retrieval. In retrieval case, two comparing schemes are proposed. Comparing between one query object and multi objects of a database image and comparing between multi query objects and multi objects of a database image are proposed. For fast retrieval, dominant object colors are key-indexed into database.

Texture Feature Extractor Based on 2D Local Fourier Transform (2D 지역푸리에변환 기반 텍스쳐 특징 서술자에 관한 연구)

  • Saipullah, Khairul Muzzammil;Peng, Shao-Hu;Kim, Hyun-Soo;Kim, Deok-Hwan
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2009.04a
    • /
    • pp.106-109
    • /
    • 2009
  • Recently, image matching becomes important in Computer Aided Diagnosis (CAD) due to the huge amount of medical images. Specially, texture feature is useful in medical image matching. However, texture features such as co-occurrence matrices can't describe well the spatial distribution of gray levels of the neighborhood pixels. In this paper we propose a frequency domain-based texture feature extractor that describes the local spatial distribution for medical image retrieval. This method is based on 2D Local Discrete Fourier transform of local images. The features are extracted from local Fourier histograms that generated by four Fourier images. Experimental results using 40 classes Brodatz textures and 1 class of Emphysema CT images show that the average accuracy of retrieval is about 93%.

An Optimized CLBP Descriptor Based on a Scalable Block Size for Texture Classification

  • Li, Jianjun;Fan, Susu;Wang, Zhihui;Li, Haojie;Chang, Chin-Chen
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.11 no.1
    • /
    • pp.288-301
    • /
    • 2017
  • In this paper, we propose an optimized algorithm for texture classification by computing a completed modeling of the local binary pattern (CLBP) instead of the traditional LBP of a scalable block size in an image. First, we show that the CLBP descriptor is a better representative than LBP by extracting more information from an image. Second, the CLBP features of scalable block size of an image has an adaptive capability in representing both gross and detailed features of an image and thus it is suitable for image texture classification. This paper successfully implements a machine learning scheme by applying the CLBP features of a scalable size to the Support Vector Machine (SVM) classifier. The proposed scheme has been evaluated on Outex and CUReT databases, and the evaluation result shows that the proposed approach achieves an improved recognition rate compared to the previous research results.

A Study on the Emotional Evaluation of fabric Color Patterns

  • Koo, Hyun-Jin;Kang, Bok-Choon;Um, Jin-Sup;Lee, Joon-Whan
    • Science of Emotion and Sensibility
    • /
    • v.5 no.3
    • /
    • pp.11-20
    • /
    • 2002
  • There are Two new models developed for objective evaluation of fabric color patterns by applying a multiple regression analysis and an adaptive foray-rule-based system. The physical features of fabric color patterns are extracted through digital image processing and the emotional features are collected based on the psychological experiments of Soen[3, 4]. The principle physical features are hue, saturation, intensity and the texture of color patterns. The emotional features arc represented thirteen pairs of adverse adjectives. The multiple regression analyses and the adaptive fuzzy system are used as a tool to analyze the relations between physical and emotional features. As a result, both of the proposed models show competent performance for the approximation and the similar linguistic interpretation to the Soen's psychological experiments.

  • PDF

Image Clustering using Color, Texture and Shape Features

  • Sleit, Azzam;Abu Dalhoum, Abdel Llatif;Qatawneh, Mohammad;Al-Sharief, Maryam;Al-Jabaly, Rawa'a;Karajeh, Ola
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.5 no.1
    • /
    • pp.211-227
    • /
    • 2011
  • Content Based Image Retrieval (CBIR) is an approach for retrieving similar images from an image database based on automatically-derived image features. The quality of a retrieval system depends on the features used to describe image content. In this paper, we propose an image clustering system that takes a database of images as input and clusters them using k-means clustering algorithm taking into consideration color, texture and shape features. Experimental results show that the combination of the three features brings about higher values of accuracy and precision.

Texture superpixels merging by color-texture histograms for color image segmentation

  • Sima, Haifeng;Guo, Ping
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.8 no.7
    • /
    • pp.2400-2419
    • /
    • 2014
  • Pre-segmented pixels can reduce the difficulty of segmentation and promote the segmentation performance. This paper proposes a novel segmentation method based on merging texture superpixels by computing inner similarity. Firstly, we design a set of Gabor filters to compute the amplitude responses of original image and compute the texture map by a salience model. Secondly, we employ the simple clustering to extract superpixles by affinity of color, coordinates and texture map. Then, we design a normalized histograms descriptor for superpixels integrated color and texture information of inner pixels. To obtain the final segmentation result, all adjacent superpixels are merged by the homogeneity comparison of normalized color-texture features until the stop criteria is satisfied. The experiments are conducted on natural scene images and synthesis texture images demonstrate that the proposed segmentation algorithm can achieve ideal segmentation on complex texture regions.

Color Image Analysis of Histological tissue Sections (해부병리조직에 대한 칼라 영상분석)

  • Choe, Heung-Guk
    • The Transactions of the Korea Information Processing Society
    • /
    • v.6 no.1
    • /
    • pp.253-260
    • /
    • 1999
  • In this paper, we suggest a new direct method for mage segmentation using texture and color information combined through a multivariate linear discriminant algorithm. The color texture is computed in nin 3${\times}$3 masks obtained from each 3${\times}$3${\times}$3 spatio-spectral neighborhood in the image using the classical haralick and Pressman texture features. Among these 9${\times}$28 texture features the best set was extracted from a training set. The resulting set of 10 features were used to segment an image into four different regions. The resulting segmentation was Compared to classical color and texture segmentation methods using both box classifiers and maximum likelihood classification. It compared favourably on the test image from a Fastred-Lightgreen stained prostatic histological tissue section based on visual inspection. The classification accuracy of 97.5% for the new method obtained on the training data was also among the best of the tested methods. If these results hold for a larger set of images, this method should be a useful tool for segmenting images where both color and texture are relevant for the segmentation process.

  • PDF

Microstructure Control and Tensile Property Measurements of Hot-deformed γ-TiAl alloy (열간가공된 γ-TiAl 합금의 미세조직 제어 및 기계적 특성 평가)

  • Park, Sung-Hyun;Kim, Jae-Kwon;Kim, Seong-Woong;Kim, Seung-Eon;Park, No-Jin;Oh, Myung-Hoon
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.32 no.6
    • /
    • pp.256-262
    • /
    • 2019
  • The microstructural features and texture development by both hot rolling and hot forging in ${\gamma}-TiAl$ alloy were investigated. In addition, additional heat treatment after hot forging was conducted to recognize change of the microstructure and texture evolution. The obtained microstructural features through dynamic recrystallization after hot deformed ${\gamma}-TiAl$ were quite different because two kinds of formation process were occurred depending on deformation condition. However, analyzed texture tends to be random orientation due to intermediate annealing up to ${\alpha}+{\beta}$ region during the hot deformation process. After additional heat treatment, microstructure transformed into fully lamellar microstructure and randomly oriented texture was also observed due to the same reason as before. Tensile test at room temperature demonstrated that anisotropy of mechanical properties were not appeared and transgranular fracture was occurred between interface of ${\alpha}_2/{\gamma}$. As a result, it could be suggested that microstructural features influenced much more than texture development on mechanical properties at room temperature.

A New Face Morphing Method using Texture Feature-based Control Point Selection Algorithm and Parallel Deep Convolutional Neural Network (텍스처 특징 기반 제어점 선택 알고리즘과 병렬 심층 컨볼루션 신경망을 이용한 새로운 얼굴 모핑 방법)

  • Park, Jin Hyeok;Khan, Rafiul Hasan;Lim, Seon-Ja;Lee, Suk-Hwan;Kwon, Ki-Ryong
    • Journal of Korea Multimedia Society
    • /
    • v.25 no.2
    • /
    • pp.176-188
    • /
    • 2022
  • In this paper, we propose a compact method for anthropomorphism that uses Deep Convolutional Neural Networks (DCNN) to detect the similarities between a human face and an animal face. We also apply texture feature-based morphing between them. We propose a basic texture feature-based morphing system for morphing between human faces only. The entire anthropomorphism process starts with the creation of an animal face classifier using a parallel DCNN that determines the most similar animal face to a given human face. The significance of our network is that it contains four sets of convolutional functions that run in parallel, allowing it to extract more features than a linear DCNN network. Our employed texture feature algorithm-based automatic morphing system recognizes the facial features of the human face and takes the Control Points automatically, rather than the traditional human aiding manual morphing system, once the similarity was established. The simulation results show that our suggested DCNN surpasses its competitors with a 92.0% accuracy rate. It also ensures that the most similar animal classes are found, and the texture-based morphing technology automatically completes the morphing process, ensuring a smooth transition from one image to another.

A Classification of Breast Tumor Tissue Images Using SVM (SVM을 이용한 유방 종양 조직 영상의 분류)

  • Hwang, Hae-Gil;Choi, Hyun-Ju;Yoon, Hye-Kyoung;Choi, Heung-Kook
    • Proceedings of the Korea Institute of Convergence Signal Processing
    • /
    • 2005.11a
    • /
    • pp.178-181
    • /
    • 2005
  • Support vector machines is a powerful learning algorithm and attempt to separate belonging to two given sets in N-dimensional real space by a nonlinear surface, often only implicitly dened by a kernel function. We described breast tissue images analyses using texture features from Haar wavelet transformed images to classify breast lesion of ductal organ Benign, DCIS and CA. The approach for creating a classifier is composed of 2 steps: feature extraction and classification. Therefore, in the feature extraction step, we extracted texture features from wavelet transformed images with $10{\times}$ magnification. In the classification step, we created four classifiers from each image of extracted features using SVM(Support Vector Machines). In this study, we conclude that the best classifier in histological sections of breast tissue in the texture features from second-level wavelet transformed images used in Polynomial function.

  • PDF