• Title/Summary/Keyword: Texture features

Search Result 497, Processing Time 0.022 seconds

Texture Image Fusion on Wavelet Scheme with Space Borne High Resolution Imagery: An Experimental Study

  • Yoo, Hee-Young;Lee , Ki-Won
    • Korean Journal of Remote Sensing
    • /
    • v.21 no.3
    • /
    • pp.243-252
    • /
    • 2005
  • Wavelet transform and its inverse processing provide the effective framework for data fusion. The purpose of this study is to investigate applicability of wavelet transform using texture images for the urban remote sensing application. We tried several experiments regarding image fusion by wavelet transform and texture imaging using high resolution images such as IKONOS and KOMPSAT EOC. As for texture images, we used homogeneity and ASM (Angular Second Moment) images according that these two types of texture images reveal detailed information of complex features of urban environment well. To find out the useful combination scheme for further applications, we performed DWT(Discrete Wavelet Transform) and IDWT(Inverse Discrete Wavelet Transform) using texture images and original images, with adding edge information on the fused images to display texture-wavelet information within edge boundaries. The edge images were obtained by the LoG (Laplacian of Gaussian) processing of original image. As the qualitative result by the visual interpretation of these experiments, the resultant image by each fusion scheme will be utilized to extract unique details of surface characterization on urban features around edge boundaries.

A Color Texture Feature For Natural Image Retrieval (자연영상 검색을 위한 색질감 특징)

  • 정재웅;권태완;박섭형
    • Proceedings of the IEEK Conference
    • /
    • 2003.11a
    • /
    • pp.553-556
    • /
    • 2003
  • In the field of content-based image retrieval, various mathematical low-level features have been proposed to describe the perceptual content of images. Since most of the features are assumed to be independent of each other, one feature is extracted from images without any consideration of the other features. Recently proposed CCE and SCFT taking advantage of the correlation between color and texture have shown relatively good performance. In this paper, the performance of CCE, SCFT, and the traditional regular weighted comparison method are evaluated. Simulation results with natural images have shown that CCE outperforms the other methods.

  • PDF

Ultrasonographic Evaluation of Diffuse Thyroid Disease: a Study Comparing Grayscale US and Texture Analysis of Real-Time Elastography (RTE) and Grayscale US

  • Yoon, Jung Hyun;Lee, Eunjung;Lee, Hye Sun;Kim, Eun-Kyung;Moon, Hee Jung;Kwak, Jin Young
    • International journal of thyroidology
    • /
    • v.10 no.1
    • /
    • pp.14-23
    • /
    • 2017
  • Background and Objectives: To evaluate and compare the diagnostic performances of grayscale ultrasound (US) and quantitative parameters obtained from texture analysis of grayscale US and elastography images in evaluating patients with diffuse thyroid disease (DTD). Materials and Methods: From September to December 2012, 113 patients (mean age, $43.4{\pm}10.7years$) who had undergone preoperative staging US and elastography were included in this study. Assessment of the thyroid parenchyma for the diagnosis of DTD was made if US features suggestive of DTD were present. Nine histogram parameters were obtained from the grayscale US and elastography images, from which 'grayscale index' and 'elastography index' were calculated. Diagnostic performances of grayscale US, texture analysis using grayscale US and elastography were calculated and compared. Results: Of the 113 patients, 85 (75.2%) patients were negative for DTD and 28 (24.8%) were positive for DTD on pathology. The presence of US features suggestive of DTD showed significantly higher rates of DTD on pathology, 60.7% to 8.2% (p<0.001). Specificity, accuracy, and positive predictive value was highest in US features, 91.8%, 84.1%, and 87.6%, respectively (all ps<0.05). Grayscale index showed higher sensitivity and negative predictive value (NPV) than US features. All diagnostic performances were higher for grayscale index than the elastography index. Area under the curve of US features was the highest, 0.762, but without significant differences to grayscale index or mean of elastography (all ps>0.05). Conclusion: Diagnostic performances were the highest for grayscale US features in diagnosis of DTD. Grayscale index may be used as a complementary tool to US features for improving sensitivity and NPV.

Image Retrieval Using Combination of Color and Multiresolution Texture Features (칼라 및 다해상도 질감 특징 결합에 의한 영상검색)

  • Chun Young-deok;Sung Joong-ki;Kim Nam-chul
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.30 no.9C
    • /
    • pp.930-938
    • /
    • 2005
  • We propose a content-based image retrieval(CBIR) method based on an efncient combination of a color feature and multiresolution texture features. As a color feature, a HSV autocorrelograrn is chosen which is blown to measure spatial correlation of colors well. As texture features, BDIP and BVLC moments are chosen which is hewn to measure local intensity variations well and measure local texture smoothness well, respectively. The texture features are obtained in a wavelet pyramid of the luminance component of a color image. The extracted features are combined for efficient similarity computation by the normalization depending on their dimensions and standard deviation vectors. Experimental results show that the proposed method yielded average $8\%\;and\;11\%$ better performance in precision vs. recall than the method using BDIPBVLC moments and the method using color autocorrelograrn, respectively and yielded at least $10\%$ better performance than the methods using wavelet moments, CSD, color histogram. Specially, the proposed method shows an excellent performance over the other methods in image DBs contained images of various resolutions.

Content-based Image Retrieval using the Color and Wavelet-based Texture Feature (색상특징과 웨이블렛 기반의 질감특징을 이용한 영상 검색)

  • 박종현;박순영;조완현;오일석
    • Journal of KIISE:Databases
    • /
    • v.30 no.2
    • /
    • pp.125-133
    • /
    • 2003
  • In this paper we propose an efficient content-based image retrieval method using the color and wavelet based texture features. The color features are obtained from soft-color histograms of the global image and the wavelet-based texture features are obtained from the invariant moments of the high-pass sub-band through the spatial-frequency analysis of the wavelet transform. The proposed system, called a color and texture based two-step retrieval(CTBTR), is composed of two-step query operations for an efficient image retrieval. In the first-step matching operation, the color histogram features are used to filter out the dissimilar images quickly from a large image database. The second-step matching operation applies the wavelet based texture features to the retained set of images to retrieve all relevant images successfully. The experimental results show that the proposed algorithm yields more improved retrieval accuracy with computationally efficiency than the previous methods.

Involvement of EMG Variables and Muscle Characteristics in Force Steadiness by Level (수준별 힘 안정성에 대한 EMG 변인 및 근육 특성의 관여)

  • Hyeon Deok Jo;Maeng Kyu Kim
    • Journal of Biomedical Engineering Research
    • /
    • v.44 no.5
    • /
    • pp.336-345
    • /
    • 2023
  • The present study was designed to evaluate changes in neuromuscular properties and the structural and qualitative characteristics of muscles during submaximal isometric contractions at low-to-relatively vigorous target forces and to determine their influence on force steadiness (FS). Thirteen young adult males performed submaximal isometric knee extensions at 10, 20, 50, and 70% of their maximal voluntary isometric contraction using their non-dominant legs. During submaximal contractions, we recorded force, EMG signals from vastus medialis (VM), vastus lateralis (VL), and rectus femoris (RF), and ultrasound images from the distal RF (dRF). Force and EMG standard deviation (SD) and coefficient of variation (CV) values were used to measure FS and EMG steadiness, respectively. Muscle thickness (MT), pennation angle (PA), echo intensity (EI), and texture features were calculated from ultrasound images to assess the structural and qualitative characteristics of the muscle. FS, neuromuscular properties, and texture features showed significant differences across different force levels. Additionally, there were significant differences in EMG_CV among the quadriceps at the 50% and 70% force levels. The results of correlation analysis revealed that FS had a significant relationship with EMG_CV in VM, VL, and RF, as well as with the texture features of dRF. This study's findings demonstrate that EMG steadiness and texture features are influenced by the magnitude of the target force and are closely related to FS, indicating their potential contribution to force output control.

Block Classification of Document Images Using the Spatial Gray Level Dependence Matrix (SGLDM을 이용한 문서영상의 블록 분류)

  • Kim Joong-Soo
    • Journal of Korea Multimedia Society
    • /
    • v.8 no.10
    • /
    • pp.1347-1359
    • /
    • 2005
  • We propose an efficient block classification of the document images using the second-order statistical texture features computed from spatial gray level dependence matrix (SGLDM). We studied on the techniques that will improve the block speed of the segmentation and feature extraction speed and the accuracy of the detailed classification. In order to speedup the block segmentation, we binarize the gray level image and then segmented by applying smoothing method instead of using texture features of gray level images. We extracted seven texture features from the SGLDM of the gray image blocks and we applied these normalized features to the BP (backpropagation) neural network, and classified the segmented blocks into the six detailed block categories of small font, medium font, large font, graphic, table, and photo blocks. Unlike the conventional texture classification of the gray level image in aerial terrain photos, we improve the classification speed by a single application of the texture discrimination mask, the size of which Is the same as that of each block already segmented in obtaining the SGLDM.

  • PDF

Image Retrieval based on Color-Spatial Features using Quadtree and Texture Information Extracted from Object MBR (Quadtree를 사용한 색상-공간 특징과 객체 MBR의 질감 정보를 이용한 영상 검색)

  • 최창규;류상률;김승호
    • Journal of KIISE:Computing Practices and Letters
    • /
    • v.8 no.6
    • /
    • pp.692-704
    • /
    • 2002
  • In this paper, we present am image retrieval method based on color-spatial features using quadtree and texture information extracted from object MBRs in an image. Tile proposed method consists of creating a DC image from an original image, changing a color coordinate system, and decomposing regions using quadtree. As such, conditions are present to decompose the DC image, then the system extracts representative colors from each region. And, image segmentation is used to search for object MBRs, including object themselves, object included in the background, or certain background region, then the wavelet coefficients are calculated to provide texture information. Experiments were conducted using the proposed similarity method based on color-spatial and texture features. Our method was able to refute the amount of feature vector storage by about 53%, but was similar to the original image as regards precision and recall. Furthermore, to make up for the deficiency in using only color-spatial features, texture information was added and the results showed images that included objects from the query images.

A Study of Evaluation of the Feature from Cooccurrence Matrix and Appropriate Applicable Resolution (공기행렬의 질감특성치들에 대한 평가와 적정 적용해상도에 관한 연구)

  • Kwon, Oh-Hyoung;Kim, Yong-Il;Eo, Yang-Dam
    • Journal of Korean Society for Geospatial Information Science
    • /
    • v.8 no.1 s.15
    • /
    • pp.105-110
    • /
    • 2000
  • Since the advent of high resolution satellite image, possibilities of applying various human interpretation mechanism to these images have increased. Also many studies about these possibilities in many fields such as computer vision, pattern recognition, artificial intellegence and remote sensing have been done. In this field of these studies, texture is defined as a kind of quantity related to spatial distribution of brightness and tone and also plays an important role for interpretation of images. Especially, methods of obtaining texture by statistical model have been studied intensively. Among these methods, texture measurement method based on cooccurrence matrix is highly estimated because it is easy to calculate texture features compared with other methods. In addition, these results in high classification accuracy when this is applied to satellite images and aerial photos. But in the existing studies using cooccurrence matrix, features have been chosen arbitrarily without considering feature variation. And not enough studies have been implemented for appropriate resolution selection in which cooccurrence matrix can extract texture. Therefore, this study reviews the concept of cooccurrence matrix as a texture measurement method, evaluates usefulness of several features obtained from cooccurrence matrix, and proposes appropriate resolution by investigating variance trend of several features.

  • PDF

Terrain Classification Using Three-Dimensional Co-occurrence Features (3차원 Co-occurrence 특징을 이용한 지형분류)

  • Jin Mun-Gwang;Woo Dong-Min;Lee Kyu-Won
    • The Transactions of the Korean Institute of Electrical Engineers D
    • /
    • v.52 no.1
    • /
    • pp.45-50
    • /
    • 2003
  • Texture analysis has been efficiently utilized in the area of terrain classification. In this application features have been obtained in the 2D image domain. This paper suggests 3D co-occurrence texture features by extending the concept of co-occurrence to 3D world. The suggested 3D features are described using co-occurrence histogram of digital elevations at two contiguous position as co-occurrence matrix. The practical construction of co-occurrence matrix limits the number of levels of digital elevation. If the digital elevation is quantized into the number of levels over the whole DEM(Digital Elevation Map), the distinctive features can not be obtained. To resolve the quantization problem, we employ local quantization technique which preserves the variation of elevations. Experiments has been carried out to verify the proposed 3D co-occurrence features, and the addition of the suggested features significantly improves the classification accuracy.