• Title/Summary/Keyword: Texture features

Search Result 497, Processing Time 0.025 seconds

Texture-based PCA for Analyzing Document Image (텍스처 정보 기반의 PCA를 이용한 문서 영상의 분석)

  • Kim, Bo-Ram;Kim, Wook-Hyun
    • Proceedings of the IEEK Conference
    • /
    • 2006.06a
    • /
    • pp.283-284
    • /
    • 2006
  • In this paper, we propose a novel segmentation and classification method using texture features for the document image. First, we extract the local entropy and then segment the document image to separate the background and the foreground using the Otsu's method. Finally, we classify the segmented regions into each component using PCA(principle component analysis) algorithm based on the texture features that are extracted from the co-occurrence matrix for the entropy image. The entropy-based segmentation is robust to not only noise and the change of light, but also skew and rotation. Texture features are not restricted from any form of the document image and have a superior discrimination for each component. In addition, PCA algorithm used for the classifier can classify the components more robustly than neural network.

  • PDF

Performance Evaluations for Leaf Classification Using Combined Features of Shape and Texture (형태와 텍스쳐 특징을 조합한 나뭇잎 분류 시스템의 성능 평가)

  • Kim, Seon-Jong;Kim, Dong-Pil
    • Journal of Intelligence and Information Systems
    • /
    • v.18 no.3
    • /
    • pp.1-12
    • /
    • 2012
  • There are many trees in a roadside, parks or facilities for landscape. Although we are easily seeing a tree in around, it would be difficult to classify it and to get some information about it, such as its name, species and surroundings of the tree. To find them, you have to find the illustrated books for plants or search for them on internet. The important components of a tree are leaf, flower, bark, and so on. Generally we can classify the tree by its leaves. A leaf has the inherited features of the shape, vein, and so on. The shape is important role to decide what the tree is. And texture included in vein is also efficient feature to classify them. This paper evaluates the performance of a leaf classification system using both shape and texture features. We use Fourier descriptors for shape features, and both gray-level co-occurrence matrices and wavelets for texture features, and used combinations of such features for evaluation of images from the Flavia dataset. We compared the recognition rates and the precision-recall performances of these features. Various experiments showed that a combination of shape and texture gave better results for performance. The best came from the case of a combination of features of shape and texture with a flipped contour for a Fourier descriptor.

Satellite Image Classification Based on Color and Texture Feature Vectors (칼라 및 질감 속성 벡터를 이용한 위성영상의 분류)

  • 곽장호;김준철;이준환
    • Korean Journal of Remote Sensing
    • /
    • v.15 no.3
    • /
    • pp.183-194
    • /
    • 1999
  • The Brightness, color and texture included in a multispectral satellite data are used as important factors to analyze and to apply the image data for a proper use. One of the most significant process in the satellite data analysis using texture or color information is to extract features effectively expressing the information of original image. It was described in this paper that six features were introduced to extract useful features from the analysis of the satellite data, and also a classification network using the back-propagation neural network was constructed to evaluate the classification ability of each vector feature in SPOT imagery. The vector features were adopted from the training set selection for the interesting region, and applied to the classification process. The classification results showed that each vector feature contained many merits and demerits depending on each vector's characteristics, and each vector had compatible classification ability. Therefore, it is expected that the color and texture features are effectively used not only in the classification process of satellite imagery, but in various image classification and application fields.

Reliable Smoke Detection using Static and Dynamic Textures of Smoke Images (연기 영상의 정적 및 동적 텍스처를 이용한 강인한 연기 검출)

  • Kim, Jae-Min
    • The Journal of the Korea Contents Association
    • /
    • v.12 no.2
    • /
    • pp.10-18
    • /
    • 2012
  • Automatic smoke detection systems using a surveillance camera requires a reliable smoke detection method. When an image sequence is captured from smoke spreading over in the air, not only has each smoke image frame a special texture, called static texture, but the difference between two smoke image frames also has a peculiar texture, called dynamic texture. Even though an object has a static texture similar to that of the smoke, its dynamic texture cannot be similar to that of the smoke if its movement differs from the diffraction action of the smoke. This paper presents a reliable smoke detection method using these two textures. The proposed method first detects change regions using accumulated frame difference, and then picks out smoke regions using Haralick features extracted from two textures.

An Evaluation of the Use of the Texture in Land Cover Classification Accuracy from SPOT HRV Image of Pusan Metropolitan Area (SPOT HRV 영상을 이용한 부산 지역 토지피복분류에 있어서의 질감의 기여에 관한 평가)

  • Jung, In-Chul
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.2 no.1
    • /
    • pp.32-44
    • /
    • 1999
  • Texture features can be incorporated in classification procedure to resolve class confusions. However, there have been few application-oriented studies made to evaluate the relative powers of texture analysis methods in a particular environment. This study evaluates the increases in the land-cover classification accuracy of the SPOT HRV multispectral data of Pusan Metropolitan area from texture processing. Twenty-four texture measures were derived from the SPOT HRV band 3 image. Each of these features were used in combination with the three spectral images in the classification of 10 land-cover classes. Supervised training and a Gaussian maximum likelihood classifier were used in the classification. It was found that while entropy produces the best empirical results in terms of the overall classification, other texture features can also largely improve the classification accuracies obtained by the use of the spectral images only. With the inclusion of texture, the classification for each category improves. Specially, urban built-up areas had much increase in accuracy. The results indicate that texture size 5 by 5 and 7 by 7 may be suitable at land cover classification of Pusan Metropolitan area.

  • PDF

Classification of Breast Tumor Cell Tissue Section Images (유방 종양 세포 조직 영상의 분류)

  • 황해길;최현주;윤혜경;남상희;최흥국
    • Journal of the Institute of Convergence Signal Processing
    • /
    • v.2 no.4
    • /
    • pp.22-30
    • /
    • 2001
  • In this paper we propose three classification algorithms to classify breast tumors that occur in duct into Benign, DCIS(ductal carcinoma in situ) NOS(invasive ductal carcinoma) The general approach for a creating classifier is composed of 2 steps: feature extraction and classification Above all feature extraction for a good classifier is very significance, because the classification performance depends on the extracted features, Therefore in the feature extraction step, we extracted morphology features describing the size of nuclei and texture features The internal structures of the tumor are reflected from wavelet transformed images with 10$\times$ and 40$\times$ magnification. Pariticulary to find the correlation between correct classification rates and wavelet depths we applied 1, 2, 3 and 4-level wavelet transforms to the images and extracted texture feature from the transformed images The morphology features used are area, perimeter, width of X axis width of Y axis and circularity The texture features used are entropy energy contrast and homogeneity. In the classification step, we created three classifiers from each of extracted features using discriminant analysis The first classifier was made by morphology features. The second and the third classifiers were made by texture features of wavelet transformed images with 10$\times$ and 40$\times$ magnification. Finally we analyzed and compared the correct classification rate of the three classifiers. In this study, we found that the best classifier was made by texture features of 3-level wavelet transformed images.

  • PDF

Study on evaluating the significance of 3D nuclear texture features for diagnosis of cervical cancer (자궁경부암 진단을 위한 3차원 세포핵 질감 특성값 유의성 평가에 관한 연구)

  • Choi, Hyun-Ju;Kim, Tae-Yun;Malm, Patrik;Bengtsson, Ewert;Choi, Heung-Kook
    • Journal of the Korea Society of Computer and Information
    • /
    • v.16 no.10
    • /
    • pp.83-92
    • /
    • 2011
  • The aim of this study is to evaluate whether 3D nuclear chromatin texture features are significant in recognizing the progression of cervical cancer. In particular, we assessed that our method could detect subtle differences in the chromatin pattern of seemingly normal cells on specimens with malignancy. We extracted nuclear texture features based on 3D GLCM(Gray Level Co occurrence Matrix) and 3D Wavelet transform from 100 cell volume data for each group (Normal, LSIL and HSIL). To evaluate the feasibility of 3D chromatin texture analysis, we compared the correct classification rate for each of the classifiers using them. In addition to this, we compared the correct classification rates for the classifiers using the proposed 3D nuclear texture features and the 2D nuclear texture features which were extracted in the same way. The results showed that the classifier using the 3D nuclear texture features provided better results. This means our method could improve the accuracy and reproducibility of quantification of cervical cell.

A scheme of extracting age-related wrinkle feature and skin age based on dermoscopic images (피부 현미경 영상을 통한 피부 특징 추출 및 피부 나이 도출 기법)

  • Choi, Young-Hwan;Hwang, Een-Jun
    • Journal of IKEEE
    • /
    • v.14 no.4
    • /
    • pp.332-338
    • /
    • 2010
  • Usually, mage feature extraction methods are performed as a pre-processing step in many applications including image retrieval, object recognition, and image indexing. Especially, in the image texture analysis, texture feature extraction methods attempt to increase texture contrast to make it easier to extract the texture features from the image. One of the distinct textures in microscopic skin image is the wrinkle, and its features could provide various useful information for the age-related applications. In this paper, we propose a scheme to extract age-related features from the skin images and improve its accuracy in the skin age estimation.

Support Vector Machine Based Diagnostic System for Thyroid Cancer using Statistical Texture Features

  • Gopinath, B.;Shanthi, N.
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.14 no.1
    • /
    • pp.97-102
    • /
    • 2013
  • Objective: The aim of this study was to develop an automated computer-aided diagnostic system for diagnosis of thyroid cancer pattern in fine needle aspiration cytology (FNAC) microscopic images with high degree of sensitivity and specificity using statistical texture features and a Support Vector Machine classifier (SVM). Materials and Methods: A training set of 40 benign and 40 malignant FNAC images and a testing set of 10 benign and 20 malignant FNAC images were used to perform the diagnosis of thyroid cancer. Initially, segmentation of region of interest (ROI) was performed by region-based morphology segmentation. The developed diagnostic system utilized statistical texture features derived from the segmented images using a Gabor filter bank at various wavelengths and angles. Finally, the SVM was used as a machine learning algorithm to identify benign and malignant states of thyroid nodules. Results: The SVMachieved a diagnostic accuracy of 96.7% with sensitivity and specificity of 95% and 100%, respectively, at a wavelength of 4 and an angle of 45. Conclusion: The results show that the diagnosis of thyroid cancer in FNAC images can be effectively performed using statistical texture information derived with Gabor filters in association with an SVM.

Analysis of Texture Features and Classifications for the Accurate Diagnosis of Prostate Cancer (전립선암의 정확한 진단을 위한 질감 특성 분석 및 등급 분류)

  • Kim, Cho-Hee;So, Jae-Hong;Park, Hyeon-Gyun;Madusanka, Nuwan;Deekshitha, Prakash;Bhattacharjee, Subrata;Choi, Heung-Kook
    • Journal of Korea Multimedia Society
    • /
    • v.22 no.8
    • /
    • pp.832-843
    • /
    • 2019
  • Prostate cancer is a high-risk with a high incidence and is a disease that occurs only in men. Accurate diagnosis of cancer is necessary as the incidence of cancer patients is increasing. Prostate cancer is also a disease that is difficult to predict progress, so it is necessary to predict in advance through prognosis. Therefore, in this paper, grade classification is attempted based on texture feature extraction. There are two main methods of classification: Uses One-way Analysis of Variance (ANOVA) to determine whether texture features are significant values, compares them with all texture features and then uses only one classification i.e. Benign versus. The second method consisted of more detailed classifications without using ANOVA for better analysis between different grades. Results of both these methods are compared and analyzed through the machine learning models such as Support Vector Machine and K-Nearest Neighbor. The accuracy of Benign versus Grade 4&5 using the second method with the best results was 90.0 percentage.