• 제목/요약/키워드: Texture feature

검색결과 437건 처리시간 0.028초

Gabor 웨이블릿을 이용한 회전 변화에 무관한 질감 분류 기법 (Rotation-Invariant Texture Classification Using Gabor Wavelet)

  • 김원희;윤청파;문광석;김종남
    • 한국멀티미디어학회논문지
    • /
    • 제10권9호
    • /
    • pp.1125-1134
    • /
    • 2007
  • 본 논문에서는 가보 웨이블릿(Gabor Wavelet)을 이용한 회전 변화에 무관한 질감 분류 기법을 제안한다. 기존의 방법들은 대용량 질감 데이터베이스에서 낮은 정정분류비(Correct Classification Rate)를 나타내었다. 제안한 방법은 가보 웨이블릿 필터링 된 영상에서 전역 특징 벡터(Global Feature Vector)와 지역 특징행렬(Local Feature Matrix)을 정의하였다. 회전 변화에 무관한 두 가지 특징 그룹을 이용하여 개선된 유사도 측정 판별식(Discriminant)을 정의하였으며, 실험을 통하여 대용량 질감 데이터베이스에 적용한 결과 향상된 정정분류비를 얻을 수 있었다. 또한 질감 영상 스펙트럼의 대칭성을 이용하여 기존의 방법보다 실험회수를 50% 가까이 감소시켰다 결론적으로 112개의 브로다츠(Brodatz) 질감 클래스에서 비교 방법에 따라 차이는 있으나 $2.3%{\sim}15.6%$의 향상된 정정분류비를 얻었다.

  • PDF

Evaluation of Volumetric Texture Features for Computerized Cell Nuclei Grading

  • Kim, Tae-Yun;Choi, Hyun-Ju;Choi, Heung-Kook
    • 한국멀티미디어학회논문지
    • /
    • 제11권12호
    • /
    • pp.1635-1648
    • /
    • 2008
  • The extraction of important features in cancer cell image analysis is a key process in grading renal cell carcinoma. In this study, we applied three-dimensional (3D) texture feature extraction methods to cell nuclei images and evaluated the validity of them for computerized cell nuclei grading. Individual images of 2,423 cell nuclei were extracted from 80 renal cell carcinomas (RCCs) using confocal laser scanning microscopy (CLSM). First, we applied the 3D texture mapping method to render the volume of entire tissue sections. Then, we determined the chromatin texture quantitatively by calculating 3D gray-level co-occurrence matrices (3D GLCM) and 3D run length matrices (3D GLRLM). Finally, to demonstrate the suitability of 3D texture features for grading, we performed a discriminant analysis. In addition, we conducted a principal component analysis to obtain optimized texture features. Automatic grading of cell nuclei using 3D texture features had an accuracy of 78.30%. Combining 3D textural and 3D morphological features improved the accuracy to 82.19%. As a comparative study, we also performed a stepwise feature selection. Using the 4 optimized features, we could obtain more improved accuracy of 84.32%. Three dimensional texture features have potential for use as fundamental elements in developing a new nuclear grading system with accurate diagnosis and predicting prognosis.

  • PDF

Region Division for Large-scale Image Retrieval

  • Rao, Yunbo;Liu, Wei
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제13권10호
    • /
    • pp.5197-5218
    • /
    • 2019
  • Large-scale retrieval algorithm is problem for visual analyses applications, along its research track. In this paper, we propose a high-efficiency region division-based image retrieve approaches, which fuse low-level local color histogram feature and texture feature. A novel image region division is proposed to roughly mimic the location distribution of image color and deal with the color histogram failing to describe spatial information. Furthermore, for optimizing our region division retrieval method, an image descriptor combining local color histogram and Gabor texture features with reduced feature dimensions are developed. Moreover, we propose an extended Canberra distance method for images similarity measure to increase the fault-tolerant ability of the whole large-scale image retrieval. Extensive experimental results on several benchmark image retrieval databases validate the superiority of the proposed approaches over many recently proposed color-histogram-based and texture-feature-based algorithms.

Texture 영상 분할을 위한 고속 적응 특징 추출 방법 (A Fast and Adaptive Feature Extraction Method for Textured Image Segmentation)

  • 이정환;김성대
    • 한국통신학회논문지
    • /
    • 제16권12호
    • /
    • pp.1249-1265
    • /
    • 1991
  • 본 논문에서는 texture 영상 분할을 위한 새로운 고속 적응 texture 특징 추출 방법을 제안하였다. 먼저 기존의 통계적 texture 특징 추출 방법에 대하여 설명하였으며, SGLDM을 구하는 방법과 이것을 이용하여 추출할 수 있는 textrue 특징들에 관하여 기술하였다. 그리고 고속으로 특징을 추출하기 위한 반복 계산식을 각 특징에 대하여 유도하였으며 반복 계산식으로 이용하여 고속 적응 texture 특징을 방법에 대하여 설명하였다. 마지막으로 제안된 방법의 성능을 평가하기 위하여 인공적으로 합성한 texture 영상에 대하여 컴퓨터 시뮬레이션을 수행하였다. 그 결과 기존의 방법과 비교해서 영역의 경계부분에서 비교적 정확한 특징값을 추출할 수 있음을 알 수 있었다.

  • PDF

하이브리드 기법을 이용한 영상 식별 연구 (A Study on Image Classification using Hybrid Method)

  • 박상성;정귀임;장동식
    • 한국컴퓨터정보학회논문지
    • /
    • 제11권6호
    • /
    • pp.79-86
    • /
    • 2006
  • 영상 식별 기술은 대용량의 멀티미디어 데이터베이스 환경 하에서 고속의 검색을 위해서 필수적이다. 본 논문은 이러한 고속 검색을 위하여 GA(Genetic Algorithm)과 SVM(Support Vector Machine)을 결합한 모델을 제안한다. 특징벡터로는 색상 정보와 질감 정보를 사용하였다. 이렇게 추출된 특징벡터의 집합을 제안한 모델을 통해 최적의 유효 특징벡터의 집합를 찾아 영상을 식별하여 정확도를 높였다. 성능평가는 색상, 질감. 색상과 질감의 연합 특징벡터를 각각 사용한 성능 비교. SYM과 제안된 알고리즘과의 성능을 비교하였다. 실험 결과 색상과 질감을 연합한 특징벡터를 사용한 것이 단일 특징벡터를 사용한 것 보다 좋은 결과를 보였으며 하이브리드 기법을 이용한 제안된 알고리즘이 SVM알고리즘만을 이용한 것 보다 좋은 결과를 보였다.

  • PDF

동영상 검색을 위한 템포럴 텍스처 모델링 (Temporal Texture modeling for Video Retrieval)

  • 김도년;조동섭
    • 대한전기학회논문지:시스템및제어부문D
    • /
    • 제50권3호
    • /
    • pp.149-157
    • /
    • 2001
  • In the video retrieval system, visual clues of still images and motion information of video are employed as feature vectors. We generate the temporal textures to express the motion information whose properties are simple expression, easy to compute. We make those temporal textures of wavelet coefficients to express motion information, M components. Then, temporal texture feature vectors are extracted using spatial texture feature vectors, i.e. spatial gray-level dependence. Also, motion amount and motion centroid are computed from temporal textures. Motion trajectories provide the most important information for expressing the motion property. In our modeling system, we can extract the main motion trajectory from the temporal textures.

  • PDF

기하학적 텍스쳐 정보를 이용한 금속 패드 변색영상 분류 알고리즘 (Metal pad Discolored Image Classification Algorithm using Geometric Texture Information)

  • 최학남;김학일
    • 제어로봇시스템학회논문지
    • /
    • 제16권5호
    • /
    • pp.469-475
    • /
    • 2010
  • This paper presents a method of classifying discolored defects of metal pads using geometric texture for AFVI (Automated Final Vision Inspection) systems. In PCB manufacturing process, the metal pads on PCB can be oxidized and discolored partly due to various environmental factors. Nowadays the discolored defects are manually detected and rejected from the process. This paper proposes an efficient geometric texture feature, SUTF (Symmetry and Uniformity Texture Feature) based on the symmetric and uniform textural characteristics of the surface of circular metal pads for automating AFVI systems. In practical experiments with real samples acquired from a production line, 30 discolored images and 1232 roughness images are tested. The experimental results demonstrate that the proposed method using SUTFs provides better performance compared to Gabor feature with 0% FNR (False Negative Rate) and 1.46% FPR (False Positive Rate). The performance of the proposed method shows its applicability in the real manufacturing systems.

Texture Image Retrieval Using DTCWT-SVD and Local Binary Pattern Features

  • Jiang, Dayou;Kim, Jongweon
    • Journal of Information Processing Systems
    • /
    • 제13권6호
    • /
    • pp.1628-1639
    • /
    • 2017
  • The combination texture feature extraction approach for texture image retrieval is proposed in this paper. Two kinds of low level texture features were combined in the approach. One of them was extracted from singular value decomposition (SVD) based dual-tree complex wavelet transform (DTCWT) coefficients, and the other one was extracted from multi-scale local binary patterns (LBPs). The fusion features of SVD based multi-directional wavelet features and multi-scale LBP features have short dimensions of feature vector. The comparing experiments are conducted on Brodatz and Vistex datasets. According to the experimental results, the proposed method has a relatively better performance in aspect of retrieval accuracy and time complexity upon the existing methods.

An approach for improving the performance of the Content-Based Image Retrieval (CBIR)

  • Jeong, Inseong
    • 한국측량학회지
    • /
    • 제30권6_2호
    • /
    • pp.665-672
    • /
    • 2012
  • Amid rapidly increasing imagery inputs and their volume in a remote sensing imagery database, Content-Based Image Retrieval (CBIR) is an effective tool to search for an image feature or image content of interest a user wants to retrieve. It seeks to capture salient features from a 'query' image, and then to locate other instances of image region having similar features elsewhere in the image database. For a CBIR approach that uses texture as a primary feature primitive, designing a texture descriptor to better represent image contents is a key to improve CBIR results. For this purpose, an extended feature vector combining the Gabor filter and co-occurrence histogram method is suggested and evaluated for quantitywise and qualitywise retrieval performance criterion. For the better CBIR performance, assessing similarity between high dimensional feature vectors is also a challenging issue. Therefore a number of distance metrics (i.e. L1 and L2 norm) is tried to measure closeness between two feature vectors, and its impact on retrieval result is analyzed. In this paper, experimental results are presented with several CBIR samples. The current results show that 1) the overall retrieval quantity and quality is improved by combining two types of feature vectors, 2) some feature is better retrieved by a specific feature vector, and 3) retrieval result quality (i.e. ranking of retrieved image tiles) is sensitive to an adopted similarity metric when the extended feature vector is employed.

국부 가중평균 질감단위를 이용한 새로운 질감인식 기법 (New Texture Recognition Method Using Local Weighting Averaged Texture Units)

  • 심재창;김기석;이준재;;하영호
    • 전자공학회논문지B
    • /
    • 제31B권4호
    • /
    • pp.129-137
    • /
    • 1994
  • In this paper, a new texture feature extraction method for texture image classification is proposed. The proposed method is a modified texture spectrum method. It uses local weighting averaged texture unit, that is, the neighbor pixels are weithted and averaged in 4-direction and the calculated values are compared with center pixel to find texture units. The proposed method has only 81 texture units and these units are really good features for texture classification. The proposed method is applied to vegetable images and Blodatz album images and compared with several conventional methods for the feature extraction time and the recognition rate.

  • PDF