• 제목/요약/키워드: Texture and Shape Features

검색결과 97건 처리시간 0.03초

Content-based image retrieval using a fusion of global and local features

  • Hee Hyung Bu;Nam Chul Kim;Sung Ho Kim
    • ETRI Journal
    • /
    • 제45권3호
    • /
    • pp.505-517
    • /
    • 2023
  • Color, texture, and shape act as important information for images in human recognition. For content-based image retrieval, many studies have combined color, texture, and shape features to improve the retrieval performance. However, there have not been many powerful methods for combining all color, texture, and shape features. This study proposes a content-based image retrieval method that uses the combined local and global features of color, texture, and shape. The color features are extracted from the color autocorrelogram; the texture features are extracted from the magnitude of a complete local binary pattern and the Gabor local correlation revealing local image characteristics; and the shape features are extracted from singular value decomposition that reflects global image characteristics. In this work, an experiment is performed to compare the proposed method with those that use our partial features and some existing techniques. The results show an average precision that is 19.60% higher than those of existing methods and 9.09% higher than those of recent ones. In conclusion, our proposed method is superior over other methods in terms of retrieval performance.

컴퓨터 시각을 이용한 버얼리종 건조 잎 담배의 등급판별 가능성 (Feasibility in Grading the Burley Type Dried Tobacco Leaf Using Computer Vision)

  • 조한근;백국현
    • Journal of Biosystems Engineering
    • /
    • 제22권1호
    • /
    • pp.30-40
    • /
    • 1997
  • A computer vision system was built to automatically grade the leaf tobacco. A color image processing algorithm was developed to extract shape, color and texture features. An improved back propagation algorithm in an artificial neural network was applied to grade the Burley type dried leaf tobacco. The success rate of grading in three-grade classification(1, 3, 5) was higher than the rate of grading in six-grade classification(1, 2, 3, 4, 5, off), on the average success rate of both the twenty-five local pixel-set and the sixteen local pixel-set. And, the average grading success rate using both shape and color features was higher than the rate using shape, color and texture features. Thus, the texture feature obtained by the spatial gray level dependence method was found not to be important in grading leaf tobacco. Grading according to the shape, color and texture features obtained by machine vision system seemed to be inadequate for replacing manual grading of Burely type dried leaf tobacco.

  • PDF

형태와 텍스쳐 특징을 조합한 나뭇잎 분류 시스템의 성능 평가 (Performance Evaluations for Leaf Classification Using Combined Features of Shape and Texture)

  • 김선종;김동필
    • 지능정보연구
    • /
    • 제18권3호
    • /
    • pp.1-12
    • /
    • 2012
  • 길 옆이나 공원 또는 조경시설에는 많은 나무들을 포함하고 있다. 비록 많은 나무들이 쉽게 우리 주변에서 보이지만, 일반인들이 그 나무의 이름, 종류 및 정보들을 얻기가 힘든 경우도 있다. 나무의 이름이나 정보를 얻기 위하여 인터넷이나 서적을 이용하여 찾아 분류하여야 한다. 나무의 구성 요소는 잎, 꽃, 수피 등이 있는데, 일반적으로 나무의 잎을 이용하여 분류할 수 있다. 이는 잎이 형태, 잎맥 등의 정보를 포함하고 있기 때문이다. 잎의 형태는 나무의 종류를 결정하는데 중요한 역할을 하며, 또한 잎맥을 포함한 텍스쳐도 나무의 종류를 분류하는데 유용하게 사용된다. 본 논문에서는 형태와 텍스쳐를 조합한 특징들을 이용한 잎 분류 시스템에 대한 성능을 평가하였다. 형태 특징으로는 푸리에 기술자를 이용하였고, 텍스쳐 특징으로는 GLCM 또는 웨이브릿 기술자, 그리고 그들의 조합을 사용하였다. 그리고 사용된 데이터는 인터넷에서 용이하게 구할 수 있고, 분류 성능평가에 사용되는 Flavia 잎 데이터 셋을 사용하였다. 형태와 텍스쳐를 기반으로 하는 다양한 조합을 가진 분류 시스템의 성능을 인식률과 PR(precision-recall) 지수로 평가하고, 성능을 비교하였다. 성능평가 결과, 형태와 텍스쳐를 조합한 특징들을 갖는 시스템의 성능이 조합하지 않은 시스템의 성능보다 나아짐을 알 수 있었다.

영상분류문제를 위한 역전파 신경망과 Support Vector Machines의 비교 연구 (A Comparison Study on Back-Propagation Neural Network and Support Vector Machines for the Image Classification Problems)

  • 서광규
    • 한국산학기술학회논문지
    • /
    • 제9권6호
    • /
    • pp.1889-1893
    • /
    • 2008
  • 본 논문은 영상 분류 문제를 위한 support vector machines (SVMs)의 적용을 통한 분류의 성능을 다루고 있다. 본 연구에서는 영상 분류 문제에서 자연영상을 대상으로 색상, 질감, 형상 특징벡터를 추출하고, 각각의 특징벡터와 이들을 결합한 특징벡터를 사용하여 역전파 신경망과 SVM 기반의 방법을 적용하여 영상 분류의 정확성을 비교한다. 실험결과는 각각의 특징벡터중에는 색상 특징벡터값을 이용한 영상 분류가 그리고 각각의 특징벡터보다는 이들을 결합한 특징벡터를 이용한 영상 분류가 보다 우수함을 보여준다. 그리고 알고리즘간의 비교에서는 정확성과 일반화성능 측면에서 역전파 신경망보다 SVMs이 우수함을 보였다.

A Synthetic Method for Generating Texture Patterns Similar to a Selected Original Texture Image

  • Shinji, Ohyama;Hong, Keum-Shik
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 2001년도 ICCAS
    • /
    • pp.35.5-35
    • /
    • 2001
  • The purpose of the study is to develop a synthetic method for generating arbitrary number of not the same but similar texture images. The method includes processes to extract basic shape elements from texture images originating in actual objects, to select them to reappear the image features and to arrange them in a image plane. The authors have already proposed the shape-pass type filter bank assuming that the sensual impression mainly depends on minute shapes existing in the texture images. By use of nine basic shape elements, namely black/white-roof, black/white-line, black/white-snake, black/white-pepper, and cliff, natural texture images originating in actual objects have been characterized by feature vectors in a nine dimensional space. To generate arbitrary number of similar texture images, minute shape pieces ...

  • PDF

컴퓨터 보조진단을 위한 초음파 영상에서 갑상선 결절의 텍스쳐 분석 (Texture analysis of Thyroid Nodules in Ultrasound Image for Computer Aided Diagnostic system)

  • 박병은;장원석;유선국
    • 한국멀티미디어학회논문지
    • /
    • 제20권1호
    • /
    • pp.43-50
    • /
    • 2017
  • According to living environment, the number of deaths due to thyroid diseases increased. In this paper, we proposed an algorithm for recognizing a thyroid detection using texture analysis based on shape, gray level co-occurrence matrix and gray level run length matrix. First of all, we segmented the region of interest (ROI) using active contour model algorithm. Then, we applied a total of 18 features (5 first order descriptors, 10 Gray level co-occurrence matrix features(GLCM), 2 Gray level run length matrix features and shape feature) to each thyroid region of interest. The extracted features are used as statistical analysis. Our results show that first order statistics (Skewness, Entropy, Energy, Smoothness), GLCM (Correlation, Contrast, Energy, Entropy, Difference variance, Difference Entropy, Homogeneity, Maximum Probability, Sum average, Sum entropy), GLRLM features and shape feature helped to distinguish thyroid benign and malignant. This algorithm will be helpful to diagnose of thyroid nodule on ultrasound images.

Use of Crown Feature Analysis to Separate the Two Pine Species in QuickBird Imagery

  • Kim, Cheon
    • 대한원격탐사학회지
    • /
    • 제24권3호
    • /
    • pp.267-272
    • /
    • 2008
  • Tree species-specific estimates with spacebome high-resolution imagery improve estimation of forest biomass which is needed to predict the long term planning for the sustainable forest management(SFM). This paper is a contribution to develop crown distinguishing coniferous species, Pinus densiflora and Pinus koraiensis, from QuickBird imagery. The proposed feature analysis derived from shape parameters and first and second-order statistical texture features of the same test area were compared for the two species separation and delineation. As expected, initial studies have shown that both formfactor and compactness shape parameters provided the successful differentiating method between the pine species within the compartment for single crown identification from spaceborne high resolution imagery. Another result revealed that the selected texture parameters - the mean, variance, angular second moment(ASM) - in the infrared band image could produce good subset combination of texture features for representing detailed tree crown outline.

Image Clustering using Color, Texture and Shape Features

  • Sleit, Azzam;Abu Dalhoum, Abdel Llatif;Qatawneh, Mohammad;Al-Sharief, Maryam;Al-Jabaly, Rawa'a;Karajeh, Ola
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제5권1호
    • /
    • pp.211-227
    • /
    • 2011
  • Content Based Image Retrieval (CBIR) is an approach for retrieving similar images from an image database based on automatically-derived image features. The quality of a retrieval system depends on the features used to describe image content. In this paper, we propose an image clustering system that takes a database of images as input and clusters them using k-means clustering algorithm taking into consideration color, texture and shape features. Experimental results show that the combination of the three features brings about higher values of accuracy and precision.

형태 전역특징과 히스토그램을 이용한 내용 기반 영상 검색 시스템 (Content based Image Retrieval System by Shape Global Feature and Histogram)

  • 황병곤;정성호;이상열
    • 한국산업정보학회논문지
    • /
    • 제7권4호
    • /
    • pp.9-16
    • /
    • 2002
  • 멀티미디어 정보검색 중 내용기반 영상검색은 색상, 질감, 형태 등의 영상 내용 특징들을 이용하여 검색하는 방법으로, 색상과 질감 특징이 영상 검색 시스템에서 일반적으로 널리 사용되고 있다. 그러나 이 시스템은 영상의 형태가 서로 다른 경우 서로 다른 내용을 나타내므로 유사 영상검색에서 오류를 수반할 수 있다. 그러므로 영상의 특징을 나타내는 형태의 사용은 효과적인 내용기반 영상검색에서 중요하다. 그래서 본 논문에서는 영상의 윤곽선에 의한 전역 특징 필터링 처리 후에 형태정보의 히스토그램에 의한 성능이 더 우수한 형태 유사도 영상 검색 시스템을 개발한다.

  • PDF

Melon Surface Color and Texture Analysis for Estimation of Soluble Solids Content and Firmness

  • Suh, Sang-Ryong;Lee, Kyeong-Hwan;Yu, Seung-Hwa;Shin, Hwa-Sun;Choi, Young-Soo;Yoo, Soo-Nam
    • Journal of Biosystems Engineering
    • /
    • 제37권4호
    • /
    • pp.252-257
    • /
    • 2012
  • Purpose: The net rind pattern and color of melon surface are important for a high market value of melon fruits. The development of the net and color are closely related to the changes in shape, size, and maturing. Therefore, the net and color characteristics can be used indicators for assessment of melon quality. The goal of this study was to investigate the possibility of estimating melon soluble solids content (SSC) and firmness by analyzing the net and color characteristics of fruit surface. Methods: The true color images of melon surface obtained at fruit equator were analyzed with 18 color features and 9 texture features. The partial least squares (PLS) method was used to estimate SSC and firmness in melons using their color and texture features. Results: In sensing melon SSC, the coefficients of determination of validation (${R_v}^2$) of the prediction models using the color and texture features were 0.84 (root mean square error of validation, RMSEV: 1.92 $^{\circ}Brix$) and 0.96 (RMSEV: 0.60 $^{\circ}Brix$), respectively. The ${R_v}^2$ values of the models for predicting melon firmness using the color and texture features were 0.64 (RMSEV: 4.62 N) and 0.79 (RMSEV: 2.99 N), respectively. Conclusions: In general, the texture features were more useful for estimating melon internal quality than the color features. However, to strengthen the usefulness of the color and texture features of melon surface for estimation of melon quality, additional experiments with more fruit samples need to be conducted.