• Title/Summary/Keyword: Texture Mapping

Search Result 207, Processing Time 0.027 seconds

Development of 3-D Web Graphic Library Using Java (자바를 이용한 3차원 웹 그래픽 라이브러리의 개발)

  • Jeong, Gab-Joong
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.9 no.8
    • /
    • pp.1709-1715
    • /
    • 2005
  • This paper describes the development of 3-D web graphic library for dynamic web graphic design. The 3-D web graphic library developed in this per supports creation of 3-D objects like cube and sphere objects, elimination of hidden line and surface, and the shading of diffuse and specular reflections. It provides, in drawing, perspective projection of an object depth first sort of multiple objects, and wire frame and solid models. It also supports texture mapping function for realistic and dynamic web application in application software. Each created 3-D object gives functions for the scaling, translation, and rotation of itself. It can be used for the development of dynamic web application software and the advertisement of information for business and tourism as a 3-D web graphic library engine. It is written in 'Java' language and runs on web browsers with Java virtual machine without any dependancy of client computer system.

Technique of Serving 3D GSIS Data on the Internet (인터넷3D GSIS를 위한 3차원 데이터의 효율적 구축 및 생성방안)

  • Kang, In-Joon;Lee, Jun-Seok
    • Journal of Korean Society for Geospatial Information Science
    • /
    • v.10 no.1 s.19
    • /
    • pp.19-26
    • /
    • 2002
  • To provide 3D GSIS data on the internet, 3D data structures need to be researched and applied for spatial analysis for subsurface modeling. As for GSIS software R&D trend the following things have pointed out : 3-dimensional geo-processing technologies, internet-based application system development, distributed processing technologies for large volume of spatial information, real-time geo-data processing methodologies, Among them research scope within Internet-based application system or Web-based GSIS generally contains core parts of software development such as Internet application, large volume of spatial database handling, real-time spatial data processing, spatial data transfer and transformation, and volumetric display of processing results. This study shows the method of providing 3D GSIS on the internet using VRML model, which are made of DEM data, draped aerial photo, and VRML script programming. And it is also studied that offering 3D GSIS engine on the internet and precise texture mapping using satellite image and aerial photos.

  • PDF

Interactive Visualization Technique for Adaptive Mesh Refinement Data Using Hierarchical Data Structures and Graphics Hardware (계층적 자료구조와 그래픽스 하드웨어를 이용한 적응적 메쉬 세분화 데이타의 대화식 가시화)

  • ;Chandrajit Bajaj
    • Journal of KIISE:Computer Systems and Theory
    • /
    • v.31 no.5_6
    • /
    • pp.360-370
    • /
    • 2004
  • Adaptive mesh refinement(AMR) is one of the popular computational simulation techniques used in various scientific and engineering fields. Although AMR data is organized in a hierarchical multi-resolution data structure, traditional volume visualization algorithms such as ray-casting and splatting cannot handle the form without converting it to a sophisticated data structure. In this paper, we present a hierarchical multi-resolution splatting technique using k-d trees and octrees for AMR data that is suitable for implementation on the latest consumer PC graphics hardware. We describe a graphical user interface to set transfer function and viewing / rendering parameters interactively. Experimental results obtained on a general purpose PC equipped with an nVIDIA GeForce3 card are presented to demonstrate that the proposed techniques can interactively render AMR data(over 20 frames per second). Our scheme can easily be applied to parallel rendering of time-varying AMR data.

Automated Vinyl Green House Identification Method Using Spatial Pattern in High Spatial Resolution Imagery (공간패턴을 이용한 자동 비닐하우스 추출방법)

  • Lee, Jong-Yeol;Kim, Byoung-Sun
    • Korean Journal of Remote Sensing
    • /
    • v.24 no.2
    • /
    • pp.117-124
    • /
    • 2008
  • This paper introduces a novel approach for automated mapping of a map feature that is vinyl green house in high spatial resolution imagery Some map features have their unique spatial patterns. These patterns are normally detected in high spatial resolution remotely sensed data by human recognition system. When spatial patterns can be applied to map feature identification, it will improve image classification accuracy and will be contributed a lot to feature identification. In this study, an automated feature identification approach using spatial aucorrelation is developed, specifically for the vinyl green house that has distinctive spatial pattern in its array. The algorithm aimed to develop the method without any human intervention such as digitizing. The method can investigate the characteristics of repeated spatial pattern of vinyl green house. The repeated spatial pattern comes from the orderly array of vinyl green house. For this, object-based approaches are essential because the pattern is recognized when the shapes that are consists of the groups of pixels are involved. The experimental result shows very effective vinyl house extraction. The targeted three vinyl green houses were exactly identified in the IKONOS image for a part of Jeju area.

Landslide Risk Assessment of Cropland and Man-made Infrastructures using Bayesian Predictive Model (베이지안 예측모델을 활용한 농업 및 인공 인프라의 산사태 재해 위험 평가)

  • Al, Mamun;Jang, Dong-Ho
    • Journal of The Geomorphological Association of Korea
    • /
    • v.27 no.3
    • /
    • pp.87-103
    • /
    • 2020
  • The purpose of this study is to evaluate the risk of cropland and man-made infrastructures in a landslide-prone area using a GIS-based method. To achieve this goal, a landslide inventory map was prepared based on aerial photograph analysis as well as field observations. A total of 550 landslides have been counted in the entire study area. For model analysis and validation, extracted landslides were randomly selected and divided into two groups. The landslide causative factors such as slope, aspect, curvature, topographic wetness index, elevation, forest type, forest crown density, geology, land-use, soil drainage, and soil texture were used in the analysis. Moreover, to identify the correlation between landslides and causative factors, pixels were divided into several classes and frequency ratio was also extracted. A landslide susceptibility map was constructed using a bayesian predictive model (BPM) based on the entire events. In the cross validation process, the landslide susceptibility map as well as observation data were plotted with a receiver operating characteristic (ROC) curve then the area under the curve (AUC) was calculated and tried to extract a success rate curve. The results showed that, the BPM produced 85.8% accuracy. We believed that the model was acceptable for the landslide susceptibility analysis of the study area. In addition, for risk assessment, monetary value (local) and vulnerability scale were added for each social thematic data layers, which were then converted into US dollar considering landslide occurrence time. Moreover, the total number of the study area pixels and predictive landslide affected pixels were considered for making a probability table. Matching with the affected number, 5,000 landslide pixels were assumed to run for final calculation. Based on the result, cropland showed the estimated total risk as US $ 35.4 million and man-made infrastructure risk amounted to US $ 39.3 million.

Automatic detection of discontinuity trace maps: A study of image processing techniques in building stone mines

  • Mojtaba Taghizadeh;Reza Khalou Kakaee;Hossein Mirzaee Nasirabad;Farhan A. Alenizi
    • Geomechanics and Engineering
    • /
    • v.36 no.3
    • /
    • pp.205-215
    • /
    • 2024
  • Manually mapping fractures in construction stone mines is challenging, time-consuming, and hazardous. In this method, there is no physical access to all points. In contrast, digital image processing offers a safe, cost-effective, and fast alternative, with the capability to map all joints. In this study, two methods of detecting the trace of discontinuities using image processing in construction stone mines are presented. To achieve this, we employ two modified Hough transform algorithms and the degree of neighborhood technique. Initially, we introduced a method for selecting the best edge detector and smoothing algorithms. Subsequently, the Canny detector and median smoother were identified as the most efficient tools. To trace discontinuities using the mentioned methods, common preprocessing steps were initially applied to the image. Following this, each of the two algorithms followed a distinct approach. The Hough transform algorithm was first applied to the image, and the traces were represented through line drawings. Subsequently, the Hough transform results were refined using fuzzy clustering and reduced clustering algorithms, along with a novel algorithm known as the farthest points' algorithm. Additionally, we developed another algorithm, the degree of neighborhood, tailored for detecting discontinuity traces in construction stones. After completing the common preprocessing steps, the thinning operation was performed on the target image, and the degree of neighborhood for lineament pixels was determined. Subsequently, short lines were removed, and the discontinuities were determined based on the degree of neighborhood. In the final step, we connected lines that were previously separated using the method to be described. The comparison of results demonstrates that image processing is a suitable tool for identifying rock mass discontinuity traces. Finally, a comparison of two images from different construction stone mines presented at the end of this study reveals that in images with fewer traces of discontinuities and a softer texture, both algorithms effectively detect the discontinuity traces.

A Measures to Implements the Conservation and Management of Traditional Landscape Architecture using Aerial Photogrammetry and 3D Scanning (전통조경 보존·관리를 위한 3차원 공간정보 적용방안)

  • Kim, Jae-Ung
    • Journal of the Korean Institute of Traditional Landscape Architecture
    • /
    • v.38 no.1
    • /
    • pp.77-84
    • /
    • 2020
  • This study is apply 3D spatial information per traditional landscape space by comparing spatial information data created using a small drone and 3D scanner used for 3D spatial information construction for efficient preservation and management of traditional landscaping space composed of areas such as scenic sites and traditional landscape architectures. The analysis results are as follows. First, aerial photogrammetry data is less accurate than 3D scanners, but it was confirmed to be more suitable for monitoring landscape changes by reading RGB images than 3D scanners by texture mapping using digital data in constructing orthographic image data. Second, the orthographic image data constructed by aerial photogrammetry in a traditional landscaping space consisting of a fixed area, such as Gwanghalluwon Garden, produced visually accurate and precise results. However, as a result of the data extraction, data for trees, which is one of the elements that make up the traditional landscaping, was not extracted, so it was determined that 3D scanning and aerial surveying had to be performed in parallel, especially in areas where trees were densely populated. Third, The surrounding trees in Soswaewon Garden caused many errors in 3D spatial information data including topographic data. It was analyzed that it is preferable to use 3D scanning technology for precise measurement rather than aerial photogrammetry because buildings, landscaping facilities and trees are dense in a relatively small space. When 3D spatial information construction data for a traditional landscaping space composed of area using a small drone and a 3D scanner free from temporal and spatial constraints and compared the data was compared, the aerial photogrammetry is effective for large site such as Hahoe Village, Gyeongju and construction of a 3D space using a 3D scanner is effective for traditional garden such as Soswaewon Garden.

A Comparative Study of Fuzzy Relationship and ANN for Landslide Susceptibility in Pohang Area (퍼지관계 기법과 인공신경망 기법을 이용한 포항지역의 산사태 취약성 예측 기법 비교 연구)

  • Kim, Jin Yeob;Park, Hyuck Jin
    • Economic and Environmental Geology
    • /
    • v.46 no.4
    • /
    • pp.301-312
    • /
    • 2013
  • Landslides are caused by complex interaction among a large number of interrelated factors such as topography, geology, forest and soils. In this study, a comparative study was carried out using fuzzy relationship method and artificial neural network to evaluate landslide susceptibility. For landslide susceptibility mapping, maps of the landslide occurrence locations, slope angle, aspect, curvature, lithology, soil drainage, soil depth, soil texture, forest type, forest age, forest diameter and forest density were constructed from the spatial data sets. In fuzzy relation analysis, the membership values for each category of thematic layers have been determined using the cosine amplitude method. Then the integration of different thematic layers to produce landslide susceptibility map was performed by Cartesian product operation. In artificial neural network analysis, the relative weight values for causative factors were determined by back propagation algorithm. Landslide susceptibility maps prepared by two approaches were validated by ROC(Receiver Operating Characteristic) curve and AUC(Area Under the Curve). Based on the validation results, both approaches show excellent performance to predict the landslide susceptibility but the performance of the artificial neural network was superior in this study area.

Real-Time Shadow Generation using Image Warping (이미지 와핑을 이용한 실시간 그림자 생성 기법)

  • Kang, Byung-Kwon;Ihm, In-Sung
    • Journal of KIISE:Computer Systems and Theory
    • /
    • v.29 no.5
    • /
    • pp.245-256
    • /
    • 2002
  • Shadows are important elements in producing a realistic image. Generation of exact shapes and positions of shadows is essential in rendering since it provides users with visual cues on the scene. It is also very important to be able to create soft shadows resulted from area light sources since they increase the visual realism drastically. In spite of their importance. the existing shadow generation algorithms still have some problems in producing realistic shadows in real-time. While image-based rendering techniques can often be effective1y applied to real-time shadow generation, such techniques usually demand so large memory space for storing preprocessed shadow maps. An effective compression method can help in reducing memory requirement, only at the additional decoding costs. In this paper, we propose a new image-barred shadow generation method based on image warping. With this method, it is possible to generate realistic shadows using only small sizes of pre-generated shadow maps, and is easy to extend to soft shadow generation. Our method will be efficiently used for generating realistic scenes in many real-time applications such as 3D games and virtual reality systems.

3D Quantitative Analysis of Cell Nuclei Based on Digital Image Cytometry (디지털 영상 세포 측정법에 기반한 세포핵의 3차원 정량적 분석)

  • Kim, Tae-Yun;Choi, Hyun-Ju;Choi, Heung-Kook
    • Journal of Korea Multimedia Society
    • /
    • v.10 no.7
    • /
    • pp.846-855
    • /
    • 2007
  • Significant feature extraction in cancer cell image analysis is an important process for grading cell carcinoma. In this study, we propose a method for 3D quantitative analysis of cell nuclei based upon digital image cytometry. First, we acquired volumetric renal cell carcinoma data for each grade using confocal laser scanning microscopy and segmented cell nuclei employing color features based upon a supervised teaming scheme. For 3D visualization, we used a contour-based method for surface rendering and a 3D texture mapping method for volume rendering. We then defined and extracted the 3D morphological features of cell nuclei. To evaluate what quantitative features of 3D analysis could contribute to diagnostic information, we analyzed the statistical significance of the extracted 3D features in each grade using an analysis of variance (ANOVA). Finally, we compared the 2D with the 3D features of cell nuclei and analyzed the correlations between them. We found statistically significant correlations between nuclear grade and 3D morphological features. The proposed method has potential for use as fundamental research in developing a new nuclear grading system for accurate diagnosis and prediction of prognosis.

  • PDF