• Title/Summary/Keyword: Texture Evolution

Search Result 142, Processing Time 0.028 seconds

Damage Evolution and Texture Development During Plate Rolling (판재 압연에서의 결함성장과 집합조직의 발전)

  • 이용신
    • Transactions of Materials Processing
    • /
    • v.9 no.4
    • /
    • pp.372-378
    • /
    • 2000
  • A process model including the effects of both the texture development and ductile damage evolution In plane strain rolling is presented. In this process model, anisotropy from deformation texture and deterioration of mechanical properties due to growth of micro voids are directly coupled Into the virtual work expressions for the momentum and mass balances. Special treatments in obtaining the initial values of field variables in the nonlinear simultaneous equations for the anisotropic, dilatant viscoplastic deformation are also given. Mutual effects of the texture development and damage evolution during plate rolling are carefully examined in terms of the distribution of strain components, accumulated damage, R-value as well as yield surfaces.

  • PDF

Simulation of Texture Evolution and Anisotropy Behavior in Dual Phase Steels during Deep Drawing Process (DP강의 디프드로잉 시 집합조직 발달과 이방성 거동 시뮬레이션)

  • Song, Young-Sik;Kim, Dae-Wan;Yang, Hoe-Seok;Han, Sung-Ho;Chin, Kwang-Gun;Choi, Shi-Hoon
    • Korean Journal of Metals and Materials
    • /
    • v.47 no.5
    • /
    • pp.274-282
    • /
    • 2009
  • To investigate the evolution of deformation texture in dual phase (DP) steels during deep-drawing deformation, deep-drawing experiments were performed. Microtexture measurements were conducted using electron backscattered diffraction (EBSD) to analyze texture evolution. A rate-sensitive polycrystal model was used to predict texture evolution during deep-drawing deformation. In order to evaluate the strain path during deep-drawing deformation, a steady state was assumed in the flange part of a deep-drawn cup. A ratesensitive polycrystal model successfully predicted the texture evolution in DP steels during deep-drawing deformation. The final stable orientations were found to be strongly dependent on the initial location in the blank. Texture analysis revealed that the deep drawability of DP steels decreases as the true strain in the radial direction of the deep-drawn cup increases during deep-drawing deformation.

Analysis of microstructure and texture evolution in AZ31Mg alloy fabricated by direct/indirect extrusion process (직/간접 압출공정에 의해 제조된 AZ31Mg 합금의 미세조직 및 집합조직 변화 분석)

  • Kim, D.H.;You, B.S.;Park, S.S.;Yoon, D.J.;Choi, S.H.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2008.10a
    • /
    • pp.38-41
    • /
    • 2008
  • To investigate the evolution of microstructure and texture in AZ31 Mg alloy, direct/indirect extrusion process was carried out at $300^{\circ}C$ with various extrusion speeds. The distribution of grain size depends on extrusion method and extrusion speed. More homogeneous grain site can be obtained at higher extrusion speed of indirect extrusion process. Extrusion speed does not affect significantly texture evolution during extrusion process regardless of extrusion method. ODF section is more useful to understand texture evolution during extrusion process compared with pole figure.

  • PDF

The effect of cold rolling reduction ratio on the texture evolution in Al-5% Mg alloy (Al-5%Mg 합금 판재의 집합조직 발달에 미치는 냉간 압하율의 영향)

  • Choi, J.K.;Kim, H.W.;Kang, S.B.;Choi, S.H.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2008.10a
    • /
    • pp.102-105
    • /
    • 2008
  • To investigate the evolution of deformation texture during cold rolling deformation, cold rolling process on a commercial Al-5% Mg sheet was carried out at different rolling reduction ratio. The evolution of annealing texture in cold-rolled Al-5% Mg sheet was also investigated. The evolution of recrystallization texture during annealing process strongly depends on the rolling reduction ratio before heat treatment. Visco-plastic self-consistent (VPSC) polycrystal model was used to predict r-value anisotropy of the cold-rolled and annealed Al-5% Mg sheets. The change of volume fraction for the major texture components was also analyzed.

  • PDF

Prediction of Deformation Texture Based on a Three-Dimensional Crystal Plasticity Finite Element Method (3차원 결정소성 유한요소해석을 통한 변형 집합조직 예측)

  • Jung, K.H.;Kim, D.K.;Im, Y.T.;Lee, Y.S.
    • Transactions of Materials Processing
    • /
    • v.21 no.4
    • /
    • pp.252-257
    • /
    • 2012
  • Crystallographic texture evolution during forming processes has a significant effect on the anisotropic flow behavior of crystalline material. In this study, a crystal plasticity finite element method (CPFEM), which incorporates the crystal plasticity constitutive law into a three-dimensional finite element method, was used to investigate texture evolution of a face-centered-cubic material - an aluminum alloy. A rate-dependent polycrystalline theory was fully implemented within an in-house program, CAMPform3D. Each integration point in the element was considered to be a polycrystalline aggregate consisting of a large number of grains, and the deformation of each grain in the aggregate was assumed to be the same as the macroscopic deformation of the aggregate. The texture evolution during three different deformation modes - uniaxial tension, uniaxial compression, and plane strain compression - was investigated in terms of pole figures and compared to experimental data available in the literature.

Simulation of Texture Evolution in DP steels during Deep Drawing Process (DP강의 디프드로잉 시 집합조직 발달 시뮬레이션)

  • Song, Y.S.;Han, S.H.;Chin, K.G.;Choi, S.H.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2008.10a
    • /
    • pp.130-133
    • /
    • 2008
  • The formability of DP steels can be affected by not only initial texture but also deformation texture evolved during plastic deformation. To investigate the evolution of deformation texture during deep drawing, deep drawing process for DP steels was carried out experimentally. A rate sensitive polycrystal model was used to predict texture evolution during deep drawing process. In order to evaluate the strain path during deep drawing, a steady state was assumed in the flange part of deep drawn cup. A rate sensitive polycrystal model successfully predicted the texture development in DP steels during deep drawing process. It was found that the final stable orientations were strongly dependent on the initial location in the blank.

  • PDF

Grain Growth and Texture Evolution of Mg: Phase Field Modeling (마그네슘의 결정립 성장과 집합조직: 상장모델 계산)

  • Kim, Dong-Uk;Cha, Pil-Ryung
    • Journal of Powder Materials
    • /
    • v.18 no.2
    • /
    • pp.168-171
    • /
    • 2011
  • We investigate grain growth behavior of poly-crystalline Mg sheet having strong basal fiber texture using phase field model for grain growth and micro-elasticity. Strong initial basal texture was maintained when external load was not imposed, but was weaken when external biaxial strain was imposed. Elastic interaction between elastic anisotropy of Mg grain and external load is the reason why texture evolution occurs.

Effect of Initial Texture on the Evolution of Warm Rolling Texture and Microstructure in Aluminum Alloy Sheet (알루미늄 판재의 온간압연 집합조직과 미세조직에 미치는 초기 집합조직의 영향)

  • Kim H. D.;Huh M. Y.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2001.10a
    • /
    • pp.138-141
    • /
    • 2001
  • The evolution of lectures and microstructure during the warm-rolling and subsequent annealing in aluminum 3004 alloy sheets was investigated by employing X-ray texture measurements and microstructure observations. Whereas the typical $\beta$-fiber orientations with the strong Bs-orientation $\{112\}<110>$ formed in the normally cold-rolled specimen, the warm-rolling at $250^{\circ}C$ led to the development of a strong through thickness texture gradient which was characterized by shear texture at the surface layer and rolling textures at the center layer After warm rolling, ultra-fine grains formed in the thickness layer with shear texture components. Upon recrystallization annealing, the $\{001\}<100>$ Cube-texture developed at the expense of normal rolling texture components the rise to the formation of corase recrystallized grains. However, in the layer with shear texture components the continuous recrystallization took place and the fine grain size persisted even after recrystallization annealing.

  • PDF

Effect of various cold rolling process on the evolution of texture and recrystallized grain size in AA 5052 sheet (AA 5052 판재의 집합조직 발달과 결정립 크기에 미치는 다양한 냉간압연 공정의 영향)

  • Lee, J.H.;Nah, J.J.;Huh, M.Y.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2008.05a
    • /
    • pp.408-410
    • /
    • 2008
  • The evolution of texture and microstructure during recrystallization was tracked after different cold rolling of aluminum sheets. Texture of the sheet center were differentiated by different strain states due to prior deformation. The evolution of recrystallization texture was studied with the amount of shear applied during cold rolling. The final grain size after recrystallization annealing was varied due to the effective strain during deformation.

  • PDF

Finite Element Analysis for Steady State Forming Process of Polycrystalline Metal Including Texture Development (집합조직의 발전을 반영하는 다결정재의 정상상태성형공정해석)

  • 김응주;이용신
    • Transactions of Materials Processing
    • /
    • v.5 no.4
    • /
    • pp.297-304
    • /
    • 1996
  • A process model is formulated considering the effect of crystallographic texture developed in forming process. The deformation induced plastic anisotropy can be predicted by capturing the evolution of texture during large deformation in the polycrystalline aggregate. The anisotropic stiffness matrix for the aggregate is derived and implemented in Eulerian finite element code using a Consistent Penalty method. As an application the evolution of texture in rolling drawing and extrusion processes are simulated. The numerical results show good agreements with report-ed experimental textures.

  • PDF