• Title/Summary/Keyword: Textural parameters

Search Result 124, Processing Time 0.018 seconds

Meat Quality, Textural and Sensory Properties of Farm-Grown Pheasant Meat and Processed Products (농장 사육 꿩고기의 육질 및 가공제품의 물성과 관능특성)

  • 오홍록;유익종;최성희
    • Food Science of Animal Resources
    • /
    • v.24 no.1
    • /
    • pp.73-79
    • /
    • 2004
  • Functional properties of farm-grown pheasant meat with different sex, age and cutting portion were investigated, and the textural and sensory characteristics of processed products were also evaluated. Chemical composition of pheasant meat was characterized to be high in protein and low in fat, and breast muscle showed more protein and less moisture than thigh muscle. Moisture/protein ratio of the pheasant meat was relatively low in a range of 2.82∼3.40, indicating the pheasant meat would be a good source of processed meat, and it had high water holding capacity and myofibrillar protein extractability with some variations depending on age and portion cut(p<0.05). Thigh muscle showed higher value of L* and b* and lower value of a* than breast muscle. However, no difference was observed in color of meat with different age and sex. The meat from the 6 months and the breast cut had lower shear force than those of respective 17 months and the thigh regardless of sex. The pressed ham and sausage manufactured with the pheasant meat had better score than the commercial products manufactured with pork or chicken in sensory and textural parameters.

Effect of Duck Feet Gelatin on Physicochemical, Textural, and Sensory Properties of Low-fat Frankfurters

  • Yeo, Eui-Joo;Kim, Hyun-Wook;Hwang, Ko-Eun;Song, Dong-Heon;Kim, Yong-Jae;Ham, Youn-Kyung;He, Fu-Yi;Park, Jae-Hyun;Kim, Cheon-Jei
    • Food Science of Animal Resources
    • /
    • v.34 no.4
    • /
    • pp.415-422
    • /
    • 2014
  • Duck feet gelatin (DFG) gel was added as a fat replacer to low-fat frankfurters and the effect of DFG on physicochemical, textural, and sensory characteristics of low-fat frankfurters was evaluated. DFG gel was prepared with a 20% duck feet gelatin concentration (w/w). Adding DFG decreased lightness and increased yellowness of the low-fat frankfurters (p<0.05). However, DFG did not affect redness of low-fat frankfurters (p>0.05). The statistical results indicated that adding DFG improved cooking yield of low-fat frankfurters (p<0.05). In addition, replacing pork back fat with DFG resulted in increased moisture content, protein content, and ash content of low-fat frankfurters, and the low-fat frankfurter formulated with 5% pork back fat and 15% DFG gel had the highest moisture content and lowest fat content (p<0.05). Adding of DFG increased all textural parameters including hardness, springiness, cohesiveness, chewiness, and gumminess of low-fat frankfurters (p<0.05). In terms of sensory properties, the low-fat frankfurter formulated with 5% pork back fat and 15% DFG gel showed similar satisfaction scores for the flavor, tenderness, juiciness, and overall acceptance when compared to the regular frankfurters (20% back fat). Therefore, our results suggest that DFG could be an effective novel source, as a fat replacer, for manufacturing of low-fat frankfurters.

Influences of Protein Characteristics on Processing and Texture of Noodles from Korean and US Wheats

  • Kang, Chon-Sik;Seo, Yong-Won;Woo, Sun-Hee;Park, Jong-Chul;Cheong, Young-Keun;Kim, Jung-Gon;Park, Chul-Soo
    • Journal of Crop Science and Biotechnology
    • /
    • v.10 no.3
    • /
    • pp.133-140
    • /
    • 2007
  • Protein characteristics of Korean wheat were evaluated to determine the effects of protein content and quality on processing and textural properties of white salted noodles compared to US wheat flours with various wheat classes and commercial flours for making noodles. Protein quality parameters, which were independent of protein content and included SDS sedimentation volume with constant protein weight, mixograph mixing time and proportion of 50% 1-propanol insoluble protein, of Korean wheat flours with 2.2+12 subunits in high molecular weight glutenin subunit compositions were comparable to those of commercial flours for making noodles. Parameters related to noodle making, including optimum water absorption, thickness and color of noodle dough sheet, correlated with protein content and related parameters, including SDS sedimentation volume with constant flour weight, mixograph water absorption and gluten yield. No significant relationship was found in protein parameters independent of protein content. Hardness of cooked noodles from Korean wheats was lower than that of US wheat flours compared to similar protein content of commercial noodle flours. Adhesiveness, springiness and cohesiveness of cooked noodles from Korean wheats were similar to US wheat flours. Hardness of cooked noodles correlated with protein content and related parameters.

  • PDF

Adsorption of Phenols onto Chemically-Activated Carbons Developed from Wild Cherry Stones

  • Alaya, M.N.;Youssef, A.M.;Karman, M.;Abd El-Aal, H.E.
    • Carbon letters
    • /
    • v.7 no.3
    • /
    • pp.188-195
    • /
    • 2006
  • Phosphoric acid-activated carbon WP's and zinc chloride-activated carbons WZ's were developed from wild cherry stones. The textural properties of the activated carbons were determined from nitrogen adsorption data at 77 K and the chemistry of the carbon surface, i.e. the surface carbon-oxygen groups (type and amount) was determined from the base and acid neutralization capacities (Boehm method). The adsorption of phenol, p-nitrophenol, p-chlorophenol, dinitrophenol and dichlorophenol was followed at 298 K. The activated carbons obtained were characterized by high surface area and large pore volumes as well as by high surface concentration of C-O groups. The investigated carbons exhibited high adsorption capacities towards phenols with these capacities increased with the increase of molecular weight and the decrease of the solubility of phenol in water. However, no general relationship could be observed between the adsorption capacities of carbons and any of their textural parameters or their surface chemistry. This may be attributed to the many factors controlling phenol adsorption and the different types and mechanisms of adsorption involved.

  • PDF

Sorption of Chromium Ions from Aqueous Solution onto Chemically Activated Carbons Developed from Maize Cobs

  • Youssef, A.M.;El-Nabarawy, Th.;Shouman, Mona A.;Khedr, S.A.
    • Carbon letters
    • /
    • v.9 no.4
    • /
    • pp.275-282
    • /
    • 2008
  • Chemically activated carbons were prepared from maize cobs, using phosphoric acid of variable concentration. The textural parameters of the activated carbons were determined from the nitrogen adsorption isotherms measured at 77 K. The chemistry of the carbon surface was determined by measuring the surface pH, the pHPZC and the concentration of the carbon - oxygen groups of the acid type on the carbon surface. Kinetics of Cr(VI) sorption/reduction was investigated at 303 K. Two processes were investigated in terms of kinetics and equilibrium namely; Cr(VI) removal and chromium sorption were studied at various initial pH (1-7). Removal of Cr(VI) shows a maximum at pH 2.5. At pH<2.5, sorption decreases because of the proton competition with evolved Cr(III) for ion exchange sites. The decrease of sorption at pH>2.5 is due to proton insufficiency and to the decrease of the extent of Cr(VI) reduction. The chemistry of the surface of activated carbon is an important factor in determining its adsorption capacity from aqueous solutions particularly when the sorption process involves ion exchange.

Textural Changes of Glutinous Rice Cakes during Storage (찹쌀떡의 저장중 텍스쳐 변화)

  • Lee, In-Eui;Rhee, Hei-Soo;Kim, Sung-Kon
    • Korean Journal of Food Science and Technology
    • /
    • v.15 no.4
    • /
    • pp.379-384
    • /
    • 1983
  • Textural changes of glutinous rice cakes during storage at $4^{\circ}C$ were evaluated by ${\beta}$-amylase digestibility and hardness. Some physical properties of starch including X-ray diffraction, swelling power, water holding capacity and gelatinization temperature were investigated. Changes in hardness were inversely related to the enzyme digestibility. The initial hardness for Tongil glutinous rice cake is much higher than that for Traditional one. Both parameters were changed rapidly during one and two days of storage for Tongil and Traditional glutinous rice cakes, respectively. These results implied that the differences in the strach structure might have significant influences on the texture of rice cakes. Sensory evalution revealed that hardness of the rice cakes was highly significant to the storage time and rice variety.

  • PDF

Textural Characteristics of Various Food Products by Texturometer (Texturometer에 의한 성상별(性狀別) 식품군(食品群)의 Texture 특성(特性))

  • Lee, Young-Hwa;Lee, Kwan-Young;Lee, Su-Rae
    • Korean Journal of Food Science and Technology
    • /
    • v.6 no.1
    • /
    • pp.42-54
    • /
    • 1974
  • Twenty-six food products which are commonly consumed in Korea were classified according to the method of Oldfield et al., based on the physical and rheological properties, and subjected to the measurement of textural characteristics by the General Foods Texturometer. It was found that the measurement conditions, texturometer curves and parameters differed depending on the food group such as gelatinous, heterogeneous gelatinous, fatty emulsion, cellular textured, fibrous, spongy and porous solid food products. Diverse texturometer curves were obtained from the same kinds of food products, especially among the porous solid food products.

  • PDF

Evaluation of Rheological and Sensory Characteristics of Plant-Based Meat Analog with Comparison to Beef and Pork

  • Bakhsh, Allah;Lee, Se-Jin;Lee, Eun-Yeong;Hwang, Young-Hwa;Joo, Seon-Tea
    • Food Science of Animal Resources
    • /
    • v.41 no.6
    • /
    • pp.983-996
    • /
    • 2021
  • This study explored the physicochemical, textural, and sensorial properties of a meat analog (MA) as compared to beef and pork meats. Results illustrate that MA patties had lower moisture, fat, and protein content, as well as higher ash and crude fiber than beef and pork. Likewise, MA patties had a higher pH, lightness (L*), and redness (a*) than either beef or pork. Pork meat exhibited the highest released water (RW) and cooking loss (CL) values, followed closely by MA with beef displaying the lowest values. Regardless of patty type, the post-cooking diameter patties were reduced significantly (p<0.05). However, the Warner-Bratzler shear force (WBSF), hardness, chewiness, and gumminess of beef were significantly higher than that of either pork or MA. The visible appearance of MA patties had more porous and loose structures before and after cooking. Consequently, based on sensory parameters, MA patties demonstrated the higher values for appearance and firmness, followed by beef and pork respectively, although the difference was not statistically significant. Therefore, the current study demonstrated that some physicochemical, textural, and sensory characteristics of beef and pork exhibited the most similarity to MA.

Printing Optimization of 3D Structure with Lard-like Texture Using a Beeswax-Based Oleogels

  • Hyeona Kang;Yourim Oh;Nam Keun Lee;Jin-Kyu Rhee
    • Journal of Microbiology and Biotechnology
    • /
    • v.32 no.12
    • /
    • pp.1573-1582
    • /
    • 2022
  • In this study, we investigated the optimal conditions for 3D structure printing of alternative fats that have the textural properties of lard using beeswax (BW)-based oleogel by a statistical analysis. Products printed with over 15% BW oleogel at 50% and 75% infill level (IL) showed high printing accuracy with the lowest dimensional printing deviation for the designed model. The hardness, cohesion, and adhesion of printed samples were influenced by BW concentration and infill level. For multi-response optimization, fixed target values (hardness, adhesiveness, and cohesiveness) were applied with lard printed at 75% IL. The preparation parameters obtained as a result of multiple reaction prediction were 58.9% IL and 16.0% BW, and printing with this oleogel achieved fixed target values similar to those of lard. In conclusion, our study shows that 3D printing based on the BW oleogel system produces complex internal structures that allow adjustment of the textural properties of the printed samples, and BW oleogels could potentially serve as an excellent replacement for fat.

3D Printing of Materials and Printing Parameters with Animal Resources: A Review

  • Eun Young Jeon;Yuri Kim;Hyun-Jung Yun;Bum-Keun Kim;Yun-Sang Choi
    • Food Science of Animal Resources
    • /
    • v.44 no.2
    • /
    • pp.225-238
    • /
    • 2024
  • 3D printing technology enables the production of creative and personalized food products that meet consumer needs, such as an attractive visual appearance, fortification of specific nutrients, and modified textures. To popularize and diversify 3D-printed foods, an evaluation of the printing feasibility of various food pastes, including materials that cannot be printed natively, is necessary. Most animal resources, such as meat, milk, and eggs, are not inherently printable; therefore, the rheological properties governing printability should be improved through pre-/post-processing or adding appropriate additives. This review provides the latest progress in extrusion-based 3D printing of animal resource-based inks. In addition, this review discusses the effects of ink composition, printing conditions, and post-processing on the printing performance and characteristics of printed constructs. Further research is required to enhance the sensory quality and nutritional and textural properties of animal resource-based printed foods.