• Title/Summary/Keyword: Textile wastewater

Search Result 141, Processing Time 0.033 seconds

Effects of Current Density and Electrolyte on COD Removal Efficiency in Dyeing Wastewater Treatment by using Electro-coagulation (전기 응집법을 이용한 염색 폐수의 처리에서 전류 밀도와 전해질의 COD 제거율에 대한 영향)

  • Jang, Seong-Ho;Kim, Go-Eun;Kang, Jeong-Hee;Ryu, Jae-Yong;Lee, Won-ki;Lee, Jae-Yong;Park, Jin-Sick
    • Journal of Korea Society of Waste Management
    • /
    • v.35 no.7
    • /
    • pp.653-659
    • /
    • 2018
  • In the industrial wastewater that occupies a large proportion of river pollution, the wastewater generated in textile, leather, and plating industries is hardly decomposable. Though dyeing wastewater has generally been treated using chemical and biological methods, its characteristics cause treatment efficiencies such as chemical oxygen demand (COD) and suspended solids (SS) to be reduced only in the activated sludge method. Currently, advanced oxidation technology for the treatment of dyeing wastewater is being developed worldwide. Electro-coagulation is highly adapted to industrial wastewater treatment because it has a high removal efficiency and a short processing time regardless of the biodegradable nature of the contaminant. In this study, the effects of the current density and the electrolyte condition on the COD removal efficiency in dyeing wastewater treatment by using electro-coagulation were tested with an aluminum anode and a stainless steel cathode. The results are as follows: (1) When the current density was adjusted to $20A/m^2$, $40A/m^2$, and $60A/m^2$ under the condition without electrolyte, the COD removal efficiency at 60 min was 62.3%, 72.3%, and 81.0%, respectively. (2) The removal efficiency with NaCl addition was 7.9% higher on average than that with non-addition at all current densities. (3) The removal efficiency with $Na_2SO_4$ addition was 4.7% higher on average than that with non-addition at all current densities.

Treatment of an Authentic Textile-dyeing Wastewater Utilizing a Fluidized Biofilter and Hybrid Recirculating System Composed of the Fluidized Biofilter and a UV/photocatalytic Reactor (실제 혼합염색폐수의 유동상 시스템을 활용한 미생물처리와 하이브리드 재순환시스템처리)

  • Lee, Eun Ju;Lim, Kwang-Hee
    • Korean Chemical Engineering Research
    • /
    • v.53 no.1
    • /
    • pp.71-77
    • /
    • 2015
  • A fluidized biofilter was filled with Pseudomonas sp. and Bacillus cereus/thuringiensis-fixed waste-tire crumb media and was run to treat authentic textile-dyeing wastewater mixed with alkaline polyester-weight-reducing wastewater. As a result, its removal efficiency of $COD_{Cr}$ and color were 75~80% and 67%, respectively. In addition, upon constructing hybrid-recirculating system composed of the fluidized biofilter and a 450 W-UV/photocatalytic reactor, only fluidized biofilter was run bypassing UV/photocatalytic reactor at stage I. Subsequently, the hybrid system was continuously run at stage II-i, ii and iii. At stage II-i, the total removal efficiency of $COD_{Cr}$ was enhanced to be 80~85%, compared to 75% at stage I, owing to 20~30% removal efficiency of the UV/photocatalytic reactor. However, at stage II-i, the total removal efficiency of color was enhanced to be 65~70%, compared to 45~65% at stage I, even though the removal efficiency of the UV/photocatalytic reactor was tantamount to merely 0~5%. As far as the removal efficiency of fluidized biofilter of the hybrid-recirculating system is concerned, its removal efficiency of color was enhanced by the synergy effect of the hybrid-recirculating system unlike $COD_{Cr}$. Besides, despite of the increase of hybrid-recirculating system-recycle ratio, the deactivation of photo-catalytic activity was scarcely observed to eliminate the color while its irreversible deactivation was observed to eliminate $COD_{Cr}$.

Polyvinyl Alcohol Degradation by Microbacterium barkeri KCCM 10507 and Paenibacillus amylolyticus KCCM 10508 in Dyeing Wastewater

  • Choi, Kwang-Keun;Park, Chul-Hwan;Kim, Sang-Yong;Lyoo, Won-Seok;Lee, Sang-Hun;Lee, Jin-Won
    • Journal of Microbiology and Biotechnology
    • /
    • v.14 no.5
    • /
    • pp.1009-1013
    • /
    • 2004
  • The purpose of this study was to investigate the degradation of PVA (polyvinyl alcohol) contained in dyeing wastewater by a mixed culture of Microbacterium barkeri KCCM 10507 and Paenibacillus amylolyticus KCCM 10508. Firstly, synthetic wastewater which contained different initial concentrations of PVA varying from 50 to 3,500 mg/l were tested to obtain optimal PVA biodegradation activity of isolated strains, and the above two strains were found to degrade PVA up to 90%, when the initial concentration of PVA was 750 mg/l and below. Next, dyeing wastewater was tested by a nixed culture of the two isolated strains, and 42% and 55% of the initial concentrations of PVA and COD, respectively, was removed after five days. MLSS was gradually increased from an initial 1,400 to 2,500 mg/l, and the pH was also increased from 5.1 to 7.8. Sterilized dyeing wastewater was tested to find the effect of strains only on the biodegradation of PVA, and PVA degradation ratio and COD removal ratio were 50% and 72.8%, respectively. Thus, the results indicated that these two strains have good ability to degrade PVA and remove COD in dyeing wastewater, Finally, it is expected that if these two strains were used in the dyeing wastewater treatment, good efficiency for PVA degradation and COD removal could be achieved.

Decolorization of dye solution using membrane bioreactor (MBR) by Trametes versicolor (막생물반응기(MBR)에 의한 염료용액의 처리연구)

  • Lee, Yuri;Kim, Hyun-Gi;Park, Chulhwan;Lee, Byunghwan;Kim, Sangyong
    • Clean Technology
    • /
    • v.10 no.3
    • /
    • pp.131-137
    • /
    • 2004
  • Due to the low biodegradability of dyes, conventional biological wastewater treatment systems are inefficient in treating textile wastewater. In this study, white rot fungus, Trametes versicolor KCTC 16781, were investigated for the decolorization of Reactive black 5 solutions. This fungus was able to degrade the dye solutions by the ligninolytic enzymes (laccase and MnP) produced. The enzyme activity remained constant until the end of reaction. The combined process of biological treatment and ceramic membrane showed better efficiency for decolorization and TOC removal than each single process.

  • PDF

Evaluation of refused tea waste activated carbon for color removal: Equilibrium and kinetic studies

  • Wijetunga, Somasiri;Gunasekara, Chathurika DFA
    • Advances in environmental research
    • /
    • v.6 no.1
    • /
    • pp.1-14
    • /
    • 2017
  • New technologies or improvement of the existing technologies are required to enhance the efficiency of removal of pollutants from wastewater. In this study we attempted to produce and test the activated carbon produced from the refused tea waste for the removal of dyes from wastewater. The objectives of this investigation were to produce activated carbon from refused tea waste by chemical activation, evaluate its performance for the removal of color produced from Acid Yellow 36, and the modeling of its dye removal with the kinetic study. The activation was performed in two steps namely carbonization at $375{\pm}25^{\circ}C$ and chemical activation with HCl at $800^{\circ}C$ under the absence of Oxygen. Adsorption isotherms and kinetic studies were performed with a textile dye, Acid Yellow 36, at different concentrations (20-80 mg/L). The maximum dye removal (~90%) observed at 80 mg/L dye concentration and it reduced at low dye concentrations. Maximum adsorption (71.97 mg/g) was recorded at 96 h at $29{\pm}1^{\circ}C$. Low pH increased the dye adsorption (pH=2; 78.27 mg/g) while adsorption reduced at high pH levels indicating that the competition occurs in between OH- ions and AY36 molecules for the adsorption sites in RTAC. The Langmuir isotherm model clearly explained the dye adsorption, favorably, by RTAC. Moreover, kinetic studied performed showed that the pseudo second order kinetic model clearly describes the dye adsorption. Based on the results obtained in this study, it can be concluded that RTAC can be used for the removal of textile dyes.

Environmental Change of Groundwater due to Urbanization (도시화(都市化)에 의한 지하수환경(地下水環境)의 변화(變化))

  • KIM, Su Won;BAE, Sang Keun
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.10 no.1
    • /
    • pp.69-77
    • /
    • 1996
  • To evaluate the change of the groundwater flow and the water table response resulting from urbanization, two cases of the transient three-dimensional numerical simulations were performed. Variations of the groundwater flow system caused by withdrawals were analyzed. Two cases of infiltration rates were applied in this study to verify the water table changes. One is the rate under the circumstance during 1994 and the other is the revised rate. The numerical results from this study indicated that groundwater flow was influenced by human impacts. Groundwater flow has been concentrated to Taegu Textile Complex area where had large amount of pumping. Water table so far decreased -2.76m a year due to withdrawals. Water tables of many points were increased more than 30cm when the surface was reformed by infiltrating the rainfall. It was appeared that the improvement of surface to recharge the precipitation was very important to preserve and manage for the groundwater.

  • PDF

A Study on Biodegradability of Various Dyeing Auxiliaries (각종 염색조제의 생분해성에 관한 연구)

  • 류원률;이호경;이영호;신현철;최장승;이기풍;조무환
    • Textile Coloration and Finishing
    • /
    • v.10 no.6
    • /
    • pp.42-48
    • /
    • 1998
  • For the effective operation of complex dyeing wastewater treatment plant, the biodegradability of various dyeing agents were investigated. For experiments in biodegradability, activated sludge from aeration tank of wastewater treatment plant was used. Biodegradability of dyeing agents were compared by measuring the $BOD_5/COD_{Cr}$ ratios and $BOD_5$ removal efficiency. $COD_{Cr}$. removal efficiency of dyeing agents was less than 80% , while $BOD_5$ removal efficiency was less than 60% after of days. Therefore, biodegradation by activated sludge were found very difficult. Judging from this, it is necessary to isolate strains biodegrading dyeing agents in order to operate activated sludge process safely.

  • PDF

Optimization of Ozone Oxidation process for Decolorization form dyeing wastewater (염색폐수 색도저감을 위한 오존산화공정의 최적화)

  • Sin, Dong-Hun;Choe, Jang-Seung;Lee, Sang-Heon;Kim, Seong-Jin;Ryu, Seung-Han;Park, Jun-Hyeong;Choe, Seong-Uk
    • Proceedings of the Korean Society of Dyers and Finishers Conference
    • /
    • 2008.10a
    • /
    • pp.115-116
    • /
    • 2008
  • The textile wastewater discharged from printing and dyeing processes is characterized by high chemical oxygen demand(COD), low biochemical oxygen demand(BOD), and heavy color. The release of dyes into the environment constitutes only small proportion of water pollution, but dyes are visible in small quantities due to their brilliance. In this study, We are investigated to optimization of Ozone Oxidation process for Decolorization.

  • PDF

Evaluation of Effective Process Operation for the Texitile Dyeing Wastewater by Ferrous Solution and Hydrogen Peroxide

  • Lee, Sang Ho;Moon, Hey Jin
    • Journal of Environmental Science International
    • /
    • v.13 no.11
    • /
    • pp.987-991
    • /
    • 2004
  • The purpose of this research is to evaluate the removal efficiencies of COD$\_$Cr/ and color for the dyeing wastewater by the different dosages of ferrous solution and H$_2$O$_2$ in Fenton process. In the case of H$_2$O$_2$ divided dosage for the Fenton's reagent 7:3 of H$_2$O$_2$ was more effective than 3:7 to remove COD$\_$Cr/ and color. The results showed that COD$\_$Cr/ was mainly removed by Fenton coagulation, where the ferric ions are formed in the initial step of Fenton reaction. On the other hand color was removed by Fenton oxidation rather than Fenton coagulation. The removal mechanism of COD$\_$Cr/ and color was mainly coagulation by ferrous ion, ferric ion and Fenton oxidation. The removal efficiencies were dependent on the ferric ion amount at the beginning of the reaction. However, the final removal efficiency of COD$\_$Cr/ and color was in the order of Fenton oxidation, ferric ion coagulation and ferrous ion coagulation. The reason of the highest removal efficiency by Fenton oxidation can be explained by the chain reactions with ferrous solution, ferric ion and hydrogen peroxide.

Performance of fouled NF membrane as used for textile dyeing wastewater

  • Abdel-Fatah, Mona A.;Khater, E.M.H.;Hafez, A.I.;Shaaban, A.F.
    • Membrane and Water Treatment
    • /
    • v.11 no.2
    • /
    • pp.111-121
    • /
    • 2020
  • The fouling of Nanofiltration membrane (NF) was examined using wastewater containing reactive black dye RB5 of 1500 Pt/Co color concentrations with 16890 mg/l TDS collected from El-alamia Company for Dying and Weaving in Egypt. The NF-unit was operated at constant pressure of 10 bars, temperature of 25℃, and flowrate of 420 L/min. SEM, EDX, and FTIR were used for fouling characterization. Using the ROIFA-4 program, the total inorganic fouling load was 1.07 mM/kg present as 49.3% Carbonates, 10.1% Sulfates, 37.2% Silicates, 37.2% Phosphates, and 0.93% Iron oxides. The permeate flux, recovery, salt rejection and mass transfer coefficients of the dye molecules were reduced significantly after fouling. The results clearly demonstrate that the fouling had detrimental effect on membrane performance in dye removal, as indicated by a sharp decrease in permeate flux and dye recovery 68%. The dye mass transfer coefficient was dropped dramatically by 34%, and the salt permeability increased by 14%. In this study, all the properties of the membrane used and the fouling that caused its poor condition are identified. Another study was conducted to regeneration fouled membrane again by chemical methods in another article (Abdel-Fatah et al. 2017).