• Title/Summary/Keyword: Textile sensors

Search Result 64, Processing Time 0.024 seconds

Seismic and vibration tests for assessing the effectiveness of GFRP for retrofitting masonry structures

  • Michelis, Paul;Papadimitriou, Costas;Karaiskos, Grigoris K.;Papadioti, Dimitra-Christina;Fuggini, Clemente
    • Smart Structures and Systems
    • /
    • v.9 no.3
    • /
    • pp.207-230
    • /
    • 2012
  • Full-scale shake table seismic experiments and low-amplitude vibration tests on a masonry building are carried out to assess its seismic performance as well as study the effectiveness of a new multifunctional textile material for retrofitting masonry structures against earthquakes. The un-reinforced and the retrofitted with glass fiber reinforced polymer (GFRP) strips masonry building was subjected to a series of earthquake excitations of increasing magnitude in order to progressively induce various small, moderate and severe levels of damage to the masonry walls. The performance of the original and retrofitted building states is evaluated. Changes in the dynamic characteristics (lowest four modal frequencies and damping ratios) of the building are used to assess and quantify the damage states of the masonry walls. For this, the dynamic modal characteristics of the structure states after each earthquake event were estimated by performing low-amplitude impulse hammer and sine-sweep forced vibration tests. Comparisons between the modal results calculated using traditional accelerometers and those using Fiber Bragg Grating (FBG) sensors embedded in the reinforcing textile were carried on to investigate the reliability and accuracy of FBG sensors in tracking the dynamic behaviour of the building. The retrofitting actions restored the stiffness characteristics of the reinforced masonry structure to the levels of the original undamaged un-reinforced structure. The results show that despite a similar dynamic behavior identified, corresponding to reduction of the modal frequencies, the un-reinforced masonry building was severely damaged, while the reinforced masonry building was able to withstand, without visual damage, the induced strong seismic excitations. The applied GFRP reinforcement architecture for one storey buildings was experimentally proven reliable for the most severe earthquake accelerations. It was easily placed in a short time and it is a cost effective solution (covering only 20% of the external wall surfaces) when compared to the cost for full wall coverage by GFRPs.

A Literature Review for an Emotion Evaluation Protocols Based on Skin Temperature for Home Appliances (피부온을 기반으로 한 가전제품의 감성 평가 프로토콜 수립을 위한 문헌 조사)

  • Jeon, Eun-Jin;Lee, Seung-hoon;Kim, Hee-Eun;You, Hee-Cheon
    • Fashion & Textile Research Journal
    • /
    • v.22 no.2
    • /
    • pp.240-249
    • /
    • 2020
  • This study reviews studies that used skin temperature in order to establish an emotion evaluation protocol based on skin temperature for home appliances. A survey of skin temperature evaluation papers was conducted by the following five stages: (1) keyword search, (2) title screening, (3) abstract screening, (4) full paper screening, and (5) relevance evaluation. Selected papers were reviewed for: purpose, recruitment criteria of participants, the number of participants, apparatus, procedure, measures, analysis methods, and major findings. Thermistor sensors and thermography are used for the measurement of skin temperature. Skin temperature sensors are attached to 4 - 10 locations on the body and their mean of skin temperature is calculated by Ramanatan's 4-point or Hardy & Dubois's 7-point method. Semantic differential (SD) method and thermography measuring facial surface temperature have been used for emotion evaluation. The SD method provides a set of adjective pairs related to a product and evaluates changes in emotion from the use of the product. The range of facial surface analyzed is defined in the thermal image and temperature changes before and after the evaluation are analyzed. The evaluation items of home appliances include form, color, material, aesthetics, satisfaction, novelty, convenience, pleasantness, and excellence. Many existing emotion studies using skin temperature do not apply physiological and psychological methods. This study provides basic data to establish a skin temperature and emotion evaluation protocol by examining literature for skin temperature and evaluation of sensitivity.

Fabrication of Electroconductive Textiles Based Polyamide/Polyurethan Knitted Fabric Coated with PEDOT:PSS/Non-oxidized Graphene (PEDOT:PSS/그래핀 코팅된 폴리아미드/폴리우레탄 혼방 편직물 기반의 전기전도성 텍스타일 제조)

  • Luo, Yuzi;Cho, Gilsoo
    • Fashion & Textile Research Journal
    • /
    • v.24 no.1
    • /
    • pp.146-155
    • /
    • 2022
  • We proposed a simple process of creating electroconductive textiles by using PEDOT:PSS(Poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate))/non-oxidized graphene to coat polyamide or polyurethane knitted fabric for smart healthcare purposes. Electroconductive textiles were obtained through a coating process that used different amounts of PEDOT:PSS/non-oxidized graphene solutions on polyamide/polyurethane knitted fabric. Subsequently, the surface, electrical, chemical, weight change, and elongation properties were evaluated according to the ratio of PEDOT:PSS/non-oxidized graphene composite(1.3 wt%:1.0 wt%; 1.3 wt%:0.6 wt%; 1.3 wt%:0.3 wt%) and the number of applications(once, twice, or thrice). The specimens' surface morphology was observed by FE-SEM. Further, their chemical structures were characterized using FTIR and Raman spectroscopy. The electrical properties measurement (sheet resistance) of the specimens, which was conducted by four-point contacts, shows the increase in conductivity with non-oxidized graphene and the number of applications in the composite system. Moreover, a test of the fabrics' mechanical properties shows that PEDOT:PSS/non-oxidized graphene-treated fabrics exhibited less elongation and better ability to recover their original length than untreated samples. Furthermore, the PEDOT:PSS/non-oxidized graphene polyamide/polyurethane knitted fabric was tested by performing tensile operations 1,000 times with a tensile strength of 20%; Consequently, sensors maintained a constant resistance without noticeable damage. This indicates that PEDOT:PSS/non-oxidized graphene strain sensors have sufficient durability and conductivity to be used as smart wearable devices.

A Study on the Textile Sensor Applied to Smart Wear for Monitoring Meditation Breathing (명상호흡 모니터링용 스마트의류를 위한 호흡수 측정 직물센서 연구)

  • Hwang, Su Jung;Jung, Yoon Won;Lee, Joo Hyeon
    • Science of Emotion and Sensibility
    • /
    • v.21 no.1
    • /
    • pp.83-90
    • /
    • 2018
  • The purpose of this study is for fundamental research of meditation smart wear for physical and mental healing, and researching method for monitoring phase of meditation through textile by measuring the number of abdominal respiration when meditating. For this purpose, the research implemented Single Wall Carbon Nano-Tube (SWCNT) based strain gauges type textile sensor, considered reliability and validity of respiratory sensing, and analyzed efficiency of respiratory sensing based on body parts comparatively. The first preliminary experiment was to evaluate the performance of textile sensor through abdominal model dummy which open and shut of 5 cm repeatedly for 2 minutes at the rate of 0.1Hz in order to simulate abdominal respiration. It concluded signal efficiency between reference sensor(BIOPAC) and textile respiratory sensor appears statistically significant (p<0.001). The second experiment were conducted with 4 subjects doing abdominal respiration under same conditions, and after comparing the signal values between two sensors from 4 attached locations(around center and sides of omphali and phren), center of omphali and sides of phren were selected as suitable location for measuring meditational breathing as they showed large and stable signals. In result, this research aimed for implementing of the textile sensor for sensing meditational breathing of long respiration cycle, review of reliability and validity for sensing number of meditational respiration with the sensor and consideration of sensing efficiency by sensing location on body parts.

카바졸 전자 공여기를 포함한 D-${\pi}$-A 유도체의 결정 구조

  • Kim, Byung-Soon;Kim, Su-Ho;Matsumoto, Shinya;Son, Young-A
    • Proceedings of the Korean Society of Dyers and Finishers Conference
    • /
    • 2011.03a
    • /
    • pp.63-63
    • /
    • 2011
  • The donor-${\pi}$-acceptor (D-${\pi}$-A) chromophoric dye system has received great attention in variety fields such as electroluminescent materials, sensors and optoelectronic devices. There are many research activities focused on the development for abovementioned application materials with the high-performance properties. In the previous work, we are reported that novel D-${\pi}$-A dye, 2-[4-(9H-carbazol-9-yl)benzylidene]-2,3-dihydroinden-1-one, is successfully attained and exhibited a positive fluorescence solvatochromism. In this work, the molecular structure and packing geometry of 2-[4-(9H-carbazol-9-yl)benzylidene]-2,3-dihydroinden-1-one was discussed by their conformational structure. Their single yellow prism crystal having approximate dimensions of $0.30{\times}0.10{\times}0.10$ mm was carried out with a Rigaku RAXIS RAPID imaging plate area detector with graphite monochromated $CuK_{\alpha}$ radiation. Their crystal structure were solved by using the CrystalStructure crystallographic software package.

  • PDF

Durability Evaluation of Stainless Steel Conductive Yarn under Various Sewing Method by Repeated Strain and Abrasion Test (반복신장 및 마모강도시험을 통한 봉제방법에 따른 스테인리스 스틸 전도사의 내구성 평가)

  • Jung, Imjoo;Lee, Sunhee
    • Journal of the Korean Society of Clothing and Textiles
    • /
    • v.42 no.3
    • /
    • pp.474-485
    • /
    • 2018
  • Smart sensors and connected devices have changed the concept of garments along with IT technology convergent garments that transform the performance of basic functions. Various types of products have been researched and developed due to the increased interest in smart clothing; in addition, studies based on physical and mechanical properties have also been actively studied to improve accuracy and reliability. This study represents a basic study for the development of smart textiles based on motion recognition for the surfing practice of beginners interested in IT convergence type. A physical durability evaluation of conductive yarn according to sewing method was later carried out. This study is a conditional specimen sewn with cotton lower thread and 100mm pattern length based on the results of previous studies. The durability of the conductive yarn according to the sewing method was evaluated according to the sewing method. Durability was evaluated by two kinds of repeated strain and abrasion tests. The specimen with applied cotton in a lower thread zigzag pattern 2mm stitch size 100mm stitch length was shown to have the most suitable durability for smart textile.

SpO2 Measurement Algorithm for PPG Signal with Motion Artifacts (동잡음을 가진 PPG 센서에서의 산소포화도 측정 알고리즘)

  • Jang, Seong-Jin;Choi, Kue-Lak;Park, Keun-Hae;Kim, Jeong-Do
    • Journal of Sensor Science and Technology
    • /
    • v.27 no.3
    • /
    • pp.192-198
    • /
    • 2018
  • Pulse oximetry is a non-invasive method for monitoring how much oxygenated hemoglobin is present in the blood. The principle of pulse oximetry is based on the red infrared light adsorption characteristics of oxygenated and deoxygenated hemoglobin. Even through the convenience of a pulse oximeter, its weak signal-to-noise ratio against motion artifacts and low perfusion makes it difficult to be accepted by execs devices. Several researchers have suggested the use of an adaptive noise cancellation (ANC) algorithm. They have demonstrated that ANC is feasible for reducing the effects of motion artifacts. Masimo Corporation developed a discrete saturation transformation (DST) algorithm that uses a reference signal and ANC. In commercial devices, it is very hard to escape it because Masimo's patents are very powerful and a better method is yet to be developed. This study proposes a new method that can measure noise saturation as well as accurate oxygen saturation from signals with high motion artifacts without using ANC and DST. The proposed algorithm can extract a normal signal without noise from a signal with motion artifacts. The reference signal from a pulse oximeter simulator was used for the evaluation of our proposed algorithm and achieved good results.

Fabrication and Evaluation of Sensor for Measuring Pulse Wave Velocity using Piezo Film and Conductive Textile (압전 필름과 전도성 섬유를 이용한 맥파 전달 속도 측정을 위한 센서의 제작 및 성능평가)

  • Kim, Jung-Chae;Jee, Sun-Ha;Yoo, Sun-Kook
    • Journal of Sensor Science and Technology
    • /
    • v.21 no.2
    • /
    • pp.135-143
    • /
    • 2012
  • Arterial stiffness is causing the serious problems for human who is suffered from hypertension and metabolic syndrome. So it is important that measure the arterial stiffness for early prevention. Many researches point out that pulse wave velocity(PWV) is the reliable and simple method to predict arterial stiffness. In this paper, we developed the sensing parts that detect the pulse wave and ECG by using piezoelectric film and conductive textile with elastic band. Our system could detect 3ch pulse wave and ECG. Simultaneously, our algorithm extracts the features for calculating the delays among pulse waves. The delays are the significant parameter to estimate PWV, thus we design the experiment for evaluating the performance of our sensing parts. The reference is PP-1000(HanByul Meditech, Korea) that is good for performance evaluation. As a result, the start point of the pulse wave was the most reliable feature for comparing with PP-1000(r=0.691, P=0.00). The results between two operators showed that there is only a slight difference in the reproducibility of the devices. In conclusion, we assume that the suggested sensor could be more comfortable and faithful method for arterial stiffness.

Development of Textile Sensors for Prevention of Forward Head Posture (거북목 예방을 위한 텍스타일 센서 개발)

  • Minsuk kim;Jinhee Park;Jooyong Kim
    • Journal of Fashion Business
    • /
    • v.27 no.4
    • /
    • pp.125-140
    • /
    • 2023
  • This study aimed to develop a smart wearable device for assessing the risk angle associated with turtle neck syndrome in patients with Video Display Terminal (VDT) syndrome. Turtle neck syndrome, characterized by forward head posture resulting from upper cross syndrome, leads to thoracic kyphosis. In this research, a stretch sensor was used to monitor the progression of turtle neck syndrome, and the sensor data was analyzed using a Universal Testing Machine (UTM) and the Gauge Factor (GF) calculation method. The scapula and cervical spine angles were measured at five stages, with 15-degree increments from 0° to 60°. During the experimental process, the stretch sensor was attached to the thoracic spine in three different lengths: 30mm, 50mm, and 100mm. Among these, the attachment method yielding the most reliable data was determined by measuring with three techniques (General Trim Adhesive, PU film, and Heat Transfer Machine), and clothing using the heat transfer machine was selected. The experimental results confirmed that the most significant change in thoracic kyphosis occurred at approximately 30° of forward head posture. Prolonged deformity can lead to various issues, highlighting the need for textile sensor solutions. The developed wearable device aims to provide users with real-time feedback on their turtle neck posture and incorporate features that can help prevent or improve the condition.

Performance and Stability Evaluation of Muscle Activation (EMG) Measurement Electrodes According to Layer Design (근활성도(EMG) 측정 전극 레이어 설계에 따른 성능 및 안정성 평가)

  • Bon-Hak Koo;Dong-Hee Lee;Joo-Yong Kim
    • Science of Emotion and Sensibility
    • /
    • v.26 no.4
    • /
    • pp.41-50
    • /
    • 2023
  • This study aims to develop electromyography (EMG) textile electrodes and assess their performance and signal stability by examining variations in layer count and fabric types. We fabricated the electrodes through layering and pressing techniques, focusing on configurations with different layer counts (Layer-0, Layer-1, and Layer-2). Our findings indicate that layer presence significantly influences muscle activation measurements, with enhanced performance correlated with increased layer numbers. Subsequently, we created electrodes from five distinct fabrics (neoprene, spandex cushion, 100% polyester, nylon spandex, and cotton canvas), each maintaining a Layer-2 structure. In performance tests, nylon spandex fabric, particularly heavier variants, outperformed others, while the spandex cushion electrodes showed superior stability in muscle activation signal acquisition. This research elucidates the connection between electrode performance and factors like layer number and electrode-skin contact area. It suggests a novel approach to electrode design, focusing on layer properties and targeted pressure application on specific sensor areas, rather than uniformly increasing sleeve pressure.