Browse > Article
http://dx.doi.org/10.5805/SFTI.2020.22.2.240

A Literature Review for an Emotion Evaluation Protocols Based on Skin Temperature for Home Appliances  

Jeon, Eun-Jin (Dept. of Industrial & Management Engineering, POSTECH)
Lee, Seung-hoon (Dept. of Industrial & Management Engineering, POSTECH)
Kim, Hee-Eun (Dept. of Clothing & Textiles, Kyungpook National University)
You, Hee-Cheon (Dept. of Industrial & Management Engineering, POSTECH)
Publication Information
Fashion & Textile Research Journal / v.22, no.2, 2020 , pp. 240-249 More about this Journal
Abstract
This study reviews studies that used skin temperature in order to establish an emotion evaluation protocol based on skin temperature for home appliances. A survey of skin temperature evaluation papers was conducted by the following five stages: (1) keyword search, (2) title screening, (3) abstract screening, (4) full paper screening, and (5) relevance evaluation. Selected papers were reviewed for: purpose, recruitment criteria of participants, the number of participants, apparatus, procedure, measures, analysis methods, and major findings. Thermistor sensors and thermography are used for the measurement of skin temperature. Skin temperature sensors are attached to 4 - 10 locations on the body and their mean of skin temperature is calculated by Ramanatan's 4-point or Hardy & Dubois's 7-point method. Semantic differential (SD) method and thermography measuring facial surface temperature have been used for emotion evaluation. The SD method provides a set of adjective pairs related to a product and evaluates changes in emotion from the use of the product. The range of facial surface analyzed is defined in the thermal image and temperature changes before and after the evaluation are analyzed. The evaluation items of home appliances include form, color, material, aesthetics, satisfaction, novelty, convenience, pleasantness, and excellence. Many existing emotion studies using skin temperature do not apply physiological and psychological methods. This study provides basic data to establish a skin temperature and emotion evaluation protocol by examining literature for skin temperature and evaluation of sensitivity.
Keywords
emotion evaluation; home appliances; skin temperature; literature review; evaluation protocol;
Citations & Related Records
Times Cited By KSCI : 3  (Citation Analysis)
연도 인용수 순위
1 Fournet, D., Voelcker, T., Ross, L., & Redortier, B. (2011). Skin temperature mapping in the cold the role of subcutaneous fat. Proceeding of the International Conference on Electrical Engineering, Spring Conference, Indonesia.
2 'Grant SQ2020 Wi-Fi series'. (2019). Amplicon. Retrieved July 30, 2019, from https://www.amplicon.com/products/grant-sq2020-wi-fi/
3 Han, H. T., Kim, M. K., Park, M. K., & Lee, S. S. (2002). Measurements of temperature distribution on human body surface using multi-channel skin temperature sensors. Proceedings of the Korean Society for Emotion & Sensibility, Korea, pp. 205-209.
4 Jeong, S. H., & Lee, K. P. (2006). Development of tool for measuring the user’s emotions expressed while using a product. Journal of Korean Society of Design Science, 64, 19(2), 343-354.
5 Kim, J. S. (2016). Emotion evaluation analysis on the design of air purifier for home. Korea Society of Design Trend, 52, 157-168.
6 Kim, H. E., & Lee, A. R. (2012). Analysis of thermography on skin temperature during exercise. Fashion & Textile Research Journal, 14(1), 130-135. doi:10.5805/KSCI.2012.14.1.130   DOI
7 Kim, J. H., & Lee, J. S. (2014). Reliability analysis of emotion evaluation EPA.PAD model in each design field. Korean Journal of the Science of Emotion & Sensibility, 17(1), 79-92. doi:10.14695/KJSOS.2014.17.1.79   DOI
8 Kim, S. Y., Choi, J. Y., Lee, H. R., & Hong, K. H. (2017). Evaluation of the wear comfort of women's fitted sports T-shirts made from cool-touch fabrics. Journal of the Korean Society of Clothing and Textiles, 41(5), 929-938. doi:10.5850/JKSCT.2017.41.5.929   DOI
9 Liu, Y., Wang, L., Liu, J., & Di, Y. (2013). A study of human skin and surface temperatures in stable and unstable thermal environments. Journal of Thermal Biology, 38(7), 440-448. doi:10.1016/j.jtherbio.2013.06.006   DOI
10 Lopez, E., Dominguez, E., Ramos, V., Fuente, J., Meins, A., Iborra, O., Galvez, G., Rodriguez-Artacho, M., & Gomez-Milan, E. (2015). The mental and subjective skin: Emotion, empathy, feelings and thermography. Consciousness and Cognition, 34, 149-162. doi:10.1016/j.concog.2015.04.003   DOI
11 Mizuno, T., Sakai, T., Kawazura, S., Asano, H., Akehi, K., Matsuno, S., Mito, K., Kume, Y., & Itakura, N. (2015). Facial skin temperature fluctuation by mental work-load with thermography. Proceedings of the International Conference on Electronics and Software Science, Takamatsu, Japan.
12 Na, N. R., Suk, H. J., & Lee, J. I. (2012). Investigation of the emotional characteristics of white for designing white based products. Korean Journal of the Science of Emotion & Sensibility, 15(2), 297-306.
13 'Registrador de Datos Economico Thermochron iButton'. (2019). Alphaomega. Retrieved July 11, 2019, from https://www.alphaomega-electronics.com/
14 Park, J. M. (2014). The development of sensibility evaluation tools for user-oriented housing interior space. Journal of the Korean Institute of Interior Design, 25(5), 112-121. doi:10.14774/JKIID.2014.23.5.112   DOI
15 Quesada, J. I., Martez, N., Palmer, S. P., Psikuta, A., Annaheim, S., Rossi, R., Corber, J., Anda, R. C., & Pez-Soriano, P. (2016). Effects of the cycling workload on core and local skin temperatures. Experimental Thermal and Fluid Science, 77, 91-99. doi:10.1016/j.expthermflusci.2016.04.008   DOI
16 Quesada, J. I., Lucas-Cuevas, A. G., Gil-Calvo, M., Gimenez, J. V., Aparicio, I., Cibrian Ortizde Anda, R. M., Salvador Palmer, R., Llana-Belloch, S., & Perez-Soriano, P. (2015). Effects of graduated compression stockings on skin temperature after running. Journal of Thermal Biology, 52, 130-136. doi:10.1016/j.jtherbio.2015.06.005   DOI
17 Richmond, V. L., Wilkinson, D. M., Blacker, S. D., Horner, F. E., Carter, J., Havenith, G., & Rayson, M. P. (2013). Insulated skin temperature as a measure of core body temperature for individuals wearing CBRN protective clothing. Physiological Measurement, 34(11), 1531-1543. doi:10.1088/0967-3334/34/11/1531   DOI
18 'Thermistor'. (2019). Link Japan. Retrieved July 11, 2019, from http://linkjapan.co.kr/shop/item/1317511/
19 Salazar-Lopez, E., Dominguez, E., Juarez Ramos, V., Fuente, J., Meins, A., Iborra, O., Galvez, G., Rodriguez-Artacho, M. A., & Gomez-Milan, E. (2015). The mental and subjective skin: Emotion, empathy, feelings and thermography. Consciousness and Cognition, 34, 149-162. doi:10.1016/j.concog.2015.04.003   DOI
20 Scherer, K. R. (2005). What are emotions? And how can they be measured?. Trends and Developments: Research on Emotions, 44(4), 695-729. doi:10.1177/0539018405058216
21 Suh, S. W., & Lee, C. G. (2010). The emotional sensibility estimation system for front-load washer. Korea Academia-Industrial Cooperation Society, 11(3), 821-826.   DOI
22 'Techni Med Vizio Focus'. (2019). Danawa. Retrieved July 15, 2019, from https://www.tecnimed.it/en/shop/uncategorized/visiofocus-06400/
23 Yang, J., Weng, W., & Fu, M. (2015). A coupling system to predict the core and skin temperatures of human wearing protective clothing in hot environments. Applied Ergonomics, 51, 363-369. doi:10.1016/j.apergo.2015.06.002   DOI
24 You, J. S. (2006). Study on consumer emotional changes of pattern design. Unpublished master's thesis, Hongik University, Seoul.
25 Corona, L. J., Simmons, G. H., Nessler, J. A., & Newcomer, S. C. (2018). Characterisation of regional skin temperatures in recreational surfers wearing a 2-mm wetsuit. Ergonomics, 61(5), 729-735. doi:10.1080/00140139.2017.1387291   DOI
26 Bach, J. E., Stewart, I. B., Disher, A. E., & Costello, J. T. (2015). A comparison between conductive and infrared devices for measuring mean skin temperature at rest, during exercise in the heat, and recovery. PLoS One Public Library of Science, 10(2). doi:10.1371/journal.pone.0117907
27 'CEM BX-500 infrared calibrator'. (2019). Amazon. Retrieved July 30, 2019, from https://www.amazon.com/CEM-BX-500-Portable-Infrared-Calibrator/dp/B01AIUF7K4
28 Choi, H., & Park, M. Y. (2002). Predicting consumer emotion evaluation of white appliances. Proceedings of the Korean Institute of Industrial Engineers, Korea, 10, pp. 101-108.
29 Choi, J. H., & Loftness, V. (2012). Investigation of human body skin temperatures as a bio-signal to indicate overall thermal sensations. Building and Environment, 58, 258-269. doi:10.1016/j.buildenv.2012.07.003   DOI
30 'Compact InfraRed Camera'. (2019). VFDs.com. Retrieved April 15, 2019, from https://www.vfds.com/flir-infrared-camera-i5
31 Dai, Y., Wang, X., Zhang, P., & Zhang, W. (2017). Wearable biosensor network enabled multimodal daily-life emotion recognition employing reputation-driven imbalanced fuzzy classification. Measurement, 109, 408-424. doi:10.1016/j.measurement.2017.06.006   DOI