• Title/Summary/Keyword: Textile Composites

Search Result 165, Processing Time 0.025 seconds

Effect of parameters on the tensile behaviour of textile-reinforced concrete composite: A numerical approach

  • Tien M. Tran;Hong X. Vu;Emmanuel Ferrier
    • Advances in concrete construction
    • /
    • v.16 no.2
    • /
    • pp.107-117
    • /
    • 2023
  • Textile-reinforced concrete composite (TRC) is a new alternative material that can satisfy sustainable development needs in the civil engineering field. Its mechanical behaviour and properties have been identified from the experimental works. However, it is necessary for a numerical approach to consider the effect of the parameters on TRC's behaviour with lower analysis duration and cost related to the experiment. This paper presents obtained results of the numerical modelling for TRC composite using the cracking model for the cementitious matrix in TRC. As a result, the TRC composite exhibited a strain-hardening behaviour with the cracking phase characterized by the drops in tensile stress on the stress-strain curve. This model also showed the failure mode by multi-cracking on the TRC specimen surface. Furthermore, the parametric studies showed the effect of several parameters on the TRC tensile behaviour, as the reinforcement ratio, the length and position of the deformation measurement zone, and elevated temperatures. These numerical results were compared with the experiment and showed a remarkable agreement for all cases of this study.

A new constitutive model to predict effective elastic properties of plain weave fabric composites

  • Mazaheri, Amir H.;Taheri-behrooz, Fathollah
    • Structural Engineering and Mechanics
    • /
    • v.77 no.5
    • /
    • pp.651-659
    • /
    • 2021
  • In this study, a new constitutive model has been developed to predict the elastic behavior of plain weave textile composites, using the finite element (FE) method. The geometric conditions and basic assumptions of this model are based on the basics of a continuum theory developed for the plane curved composites. In this model, the mechanical properties of the weave region and pure matrix region is calculated separately and then imported for the FE analysis. This new constitutive model is used to implement the mechanical properties of weave region in the representative volume element (RVE). The constitutive relations are implemented as user-material subroutine code (UMAT) in ABAQUS® FE software. The results of FE analysis have been compared with experimental results and other data available in the literature. These comparisons confirmed the capability of the presented model for the prediction of effective elastic properties of plain weave fabric composites.

Stitching Effect on Flexural and Interlaminar Properties of MWK Textile Composites

  • Byun, Joon-Hyung;Wang, Yi-Qi;Um, Moon-Kwang;Lee, Sang-Kwan;Song, Jung-Il;Kim, Byung-Sun
    • Composites Research
    • /
    • v.28 no.3
    • /
    • pp.136-141
    • /
    • 2015
  • The stitching process has been widely utilized for the improvement of through-thickness property of the conventional laminated composites. This paper reports the effects of stitching on the flexural and interlaminar shear properties of multi-axial warp knitted (MWK) composites in order to identify the mechanical property improvements. In order to minimize the geometric uncertainties associated with the stacking pattern of fabrics, the regular lay-up was considered in the examination of the stitching effect. The key parameters are as follows: the stitch spacings, the stitching types, the stitching location, and the location of compression fixture nose. These parameters have little effect on the flexural and interlaminar shear properties, except for the case of stitching location. However, the geometry variations caused by the stitching resulted in minor changes to the mechanical properties consistently. Stitching on the $0^{\circ}$ fibers showed the lowest flexural strength and modulus (12% reduction for both properties). The stitch spacing of 5 mm resulted in 8% reduction for the case of interlaminar strength compared with that of 10 mm spacing.

Crystallization of Poly(vinylidene fluoride)-SiO2 Hybrid Composites Prepared by a Sol-gel Process

  • Cho, Jae Whan;Sul, Kyun Il
    • Fibers and Polymers
    • /
    • v.2 no.3
    • /
    • pp.135-140
    • /
    • 2001
  • Organic-inorganic hybrid composites consisting of poly(vinylidene fluoride) (PVDF) and SiO$_2$ were prepared through a sol-gel process and the crystallization behavior of PVDF in the presence of $SiO_2$ networks was investigated by spectroscopic, thermal and x-ray diffraction measurements. The hybrid composites obtained were relatively transparent, and brittleness increased with increasing content of tetraethoxysilane (TEOS). It was regarded from FT-lR and DSC thermal analyses that at least a certain interaction existed between PVDF molecules and the $SiO_2$ networks. X-ray diffraction measurements showed that all of the hybrid samples had a crystal structure of PVDF ${\gamma}$-phase. Fresh gel prepared from the sol-gel reaction showed a very weak x-ray diffraction peak near 2$\theta$=$21^{\circ}$ due to PVDF crystallization, and Intensity increased grade-ally with time after gelation. The crystallization behavior of PVDF was strongly affected by the amount of $SiO_2$ networks. That is, $SiO_2$ content directly influenced preference and disturbance fur crystallization. In polymer-rich hybrids, $SiO_2$ networks had a favorable effect on the extent of PVDF crystallization. In particular, the maximum portent crystallinity of PVDF occurred at the content of 3.7 wt% $SiO_2$ and was higher than that of pure PVDF. However. beyond about 10 wt% $SiO_2$, the crystallization of PVDF was strongly confined.

  • PDF

Evaluation of homogenized thermal conductivities of imperfect carbon-carbon textile composites using the Mori-Tanaka method

  • Vorel, Jan;Sejnoha, Michal
    • Structural Engineering and Mechanics
    • /
    • v.33 no.4
    • /
    • pp.429-446
    • /
    • 2009
  • Three-scale homogenization procedure is proposed in this paper to provide estimates of the effective thermal conductivities of porous carbon-carbon textile composites. On each scale - the level of fiber tow (micro-scale), the level of yarns (meso-scale) and the level of laminate (macro-scale) - a two step homogenization procedure based on the Mori-Tanaka averaging scheme is adopted. This involves evaluation of the effective properties first in the absence of pores. In the next step, an ellipsoidal pore is introduced into a new, generally orthotropic, matrix to make provision for the presence of crimp voids and transverse and delamination cracks resulting from the thermal transformation of a polymeric precursor into the carbon matrix. Other sources of imperfections also attributed to the manufacturing processes, including non-uniform texture of the reinforcements, are taken into consideration through the histograms of inclination angles measured along the fiber tow path together with a particular shape of the equivalent ellipsoidal inclusion proposed already in Sko ek (1998). The analysis shows that a reasonable agreement of the numerical predictions with experimental measurements can be achieved.

Multi-scale Progressive Failure Analysis of Triaxially Braided Textile Composites

  • Geleta, Tsinuel N.;Woo, Kyeongsik
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.18 no.3
    • /
    • pp.436-449
    • /
    • 2017
  • In this paper, the damage and failure behavior of triaxially braided textile composites was studied using progressive failure analysis. The analysis was performed at both micro and meso-scales through iterative cycles. Stress based failure criteria were used to define the failure states at both micro- and meso-scale models. The stress-strain curve under uniaxial tensile loading was drawn based on the load-displacement curve from the progressive failure analysis and compared to those by test and computational results from reference for verification. Then, the detailed failure initiation and propagation was studied using the verified model for both tensile and compression loading cases. The failure modes of each part of the model were assessed at different stages of failure. Effect of ply stacking and number of unit cells considered were then investigated using the resulting stress-strain curves and damage patterns. Finally, the effect of matrix plasticity was examined for the compressive failure behavior of the same model using elastic, elastic - perfectly plastic and multi-linear elastic-plastic matrix properties.

Investigation of the bending behavior of 3D glass fabric-reinforced composite panels as slabs in buildings

  • Sabet, S.A.;Nazari, Sh.;Akhbari, M.;Kolahchi, R.
    • Earthquakes and Structures
    • /
    • v.16 no.3
    • /
    • pp.369-373
    • /
    • 2019
  • Construction industry is one of the largest markets for composite materials. Composite materials are mostly utilized as surface coatings or concrete reinforcements, and they can hardly be found as a load bearing member in buildings. The three-dimensional composite structures with considerable bending, compressive and shear strengths are capable to be used as construction load bearing members. However, these composites cannot compete with other materials due to higher manufacturing costs. If the cost issue is resolved or their excellent performance is taken into consideration to overcome disadvantages related to economic-competitive challenges, these 3D composites can significantly reduce the construction time and result in lighter and safer buildings. Sandwich composite panels reinforced with 3D woven glass fabrics are amongst composites with highest bending strength. The current study investigates the possibility of utilizing these composite materials to construct ceilings and their application as slabs. One-to-one scale experimental loading of these composite panels shows a remarkable bending strength. Simulation results using ABAQUS software, also indicate that theoretical predictions of bending behavior of these panels are in good agreement with the observed experimental results.

Carbon Fiber Tow Spreading Technology and Mechanical Properties of Laminate Composites (탄소섬유 펼침 기술 및 이를 적용한 적층 복합재료의 기계적 특성)

  • Park, Sung Min;Kim, Myung Soon;Choi, Yoon Sung;Lee, Eun Soo;Yoo, Ho Wook;Chon, Jin Sung
    • Composites Research
    • /
    • v.28 no.5
    • /
    • pp.249-253
    • /
    • 2015
  • This paper reports a study on a method for achieving lightweight thermoplastic laminate composites referred to as tow spreading technology. Thickness of an unspread 12 K carbon fiber tow is reduced by increasing the tow width from 7 mm to 20 mm. The polypropylene (PP) film was used to stabilize and impregnate the spread tow, covering it into a partially consolidated prepreg: 12 K carbon fiber spread tow/PP. Laminates were fabricated from the spread tow prepreg and control laminate composites were produced from unspread tow prepreg consisting of 12 K carbon fiber and PP. The void content, tensile and flexural properties of the composite laminates were investigated. Consequently, the spread tow laminate composite exhibited lower void content and improved mechanical properties.

Mechanical, Electrical and Thermal Properties of Polymer Composites Containing Long Carbon Fibers and Multi-walled Carbon Nanotubes (탄소장섬유와 다중벽 탄소나노튜브가 혼입된 고분자 복합재료의 기계적, 전기적 및 열적 특성)

  • Min Su Kim;Ki Hoon Kim;Bo-kyung Choi;Jong Hyun Park;Seong Yun Kim
    • Composites Research
    • /
    • v.37 no.3
    • /
    • pp.197-203
    • /
    • 2024
  • Mechanical, electrical and thermal properties of polymer composites can be improved simultaneously by incorporating carbon fibers (CFs), which are beneficial for improving the mechanical properties, and multi-walled carbon nanotubes (MWCNTs), which are advantageous for improving the conductive properties. In this study, MWCNTs were incorporated into carbon long fiber thermoplastic (CLFT), which has excellent mass production processability and excellent mechanical properties, to control electrical and thermal properties. The mechanical and electrical properties of the prepared composites were most significantly influenced by the amount of filler incorporated. On the other hand, the thermal properties were improved due to the formation of a filler network interconnected by the incorporation of MWCNTs. By adjusting the filler amount, filler composition, and filler network structure of MWCNT-incorporated CLFT, the mechanical, electrical, and thermal properties could be controlled.

Interfaces Between Rubber and Metallic or Textile Tire Cords

  • Ooij Wim J. Van;Luo Shijian;Jayaseelan Senthil K,
    • Elastomers and Composites
    • /
    • v.34 no.4
    • /
    • pp.299-314
    • /
    • 1999
  • Bonding metal and textile components to rubber has always posed a problem. In this paper, an attempt had been made to modify textile and metal surfaces for bonding with rubber. The metal surfaces were modified using silane coupling agents and textile fibers were modified using plasma polymerization techniques. Some results on adhesion of metals to a range of sulfur-cured rubber compounds using a combination of organofunctional silanes are given here. The treatment was not only effective for high-sulfur compounds but also for low-sulfur com pounds as used in engine mounts and even for some semi-EV compounds. Coatings of plasmapolymerized pyrrole or acetylene were deposited on aramid and polyester tire cords. Standard pull-out force adhesion measurements were used to determine adhesion of tire cords to rubber compounds. The plasma coatings were characterized by various techniques and the performance results are explained in an interpenetrating network model.

  • PDF