• Title/Summary/Keyword: TextMining

Search Result 1,563, Processing Time 0.026 seconds

Text Mining Driven Content Analysis of Ebola on News Media and Scientific Publications (텍스트 마이닝을 이용한 매체별 에볼라 주제 분석 - 바이오 분야 연구논문과 뉴스 텍스트 데이터를 이용하여 -)

  • An, Juyoung;Ahn, Kyubin;Song, Min
    • Journal of the Korean Society for Library and Information Science
    • /
    • v.50 no.2
    • /
    • pp.289-307
    • /
    • 2016
  • Infectious diseases such as Ebola virus disease become a social issue and draw public attention to be a major topic on news or research. As a result, there have been a lot of studies on infectious diseases using text-mining techniques. However, there is no research on content analysis of two media channels that have distinct characteristics. Accordingly, in this study, we conduct topic analysis between news (representing a social perspective) and academic research paper (representing perspectives of bio-professionals). As text-mining techniques, topic modeling is applied to extract various topics according to the materials, and the word co-occurrence map based on selected bio entities is used to compare the perspectives of the materials specifically. For network analysis, topic map is built by using Gephi. Aforementioned approaches uncovered the difference of topics between two materials and the characteristics of the two materials. In terms of the word co-occurrence map, however, most of entities are shared in both materials. These results indicate that there are differences and commonalties between social and academic materials.

Analyzing the Study Trends of 'Sense of Place' Using Text Mining Techniques (텍스트마이닝 기법을 활용한 국내외 장소성 관련 연구동향 분석)

  • Lee, Ina;Kim, Hea-Jin
    • Journal of the Korean BIBLIA Society for library and Information Science
    • /
    • v.30 no.2
    • /
    • pp.189-209
    • /
    • 2019
  • Main Path Analysis (MPA) is one of the text mining techniques that extracts the core literature that contributes knowledge transfer based on citation information in the literature. This study applied various text mining techniques to abstract of the paper related with sense-of-place, which is published at Korea and abroad from 1990 to 2018 so that could discuss in a macro perspective. The main path analysis results showed that from 1990, overseas research on sense-of-place has been carried out in the order of personal identity, public land management, environmental education and urban development-related areas. Also, by using the network analysis, this study found that sense-of-place was discussed at various levels in Korea, including urban development, culture, literature, and history. On the other hand, it has been found that there are few topic changes in international studies, and that discussions on health, identity, landscape and urban development have been going on steadily since the 1990s. This study has implications that it presents a new perspective of grasping the overall flow of relevant research.

Occupational Therapy in Long-Term Care Insurance For the Elderly Using Text Mining (텍스트 마이닝을 활용한 노인장기요양보험에서의 작업치료: 2007-2018년)

  • Cho, Min Seok;Baek, Soon Hyung;Park, Eom-Ji;Park, Soo Hee
    • Journal of Society of Occupational Therapy for the Aged and Dementia
    • /
    • v.12 no.2
    • /
    • pp.67-74
    • /
    • 2018
  • Objective : The purpose of this study is to quantitatively analyze the role of occupational therapy in long - term care insurance for the elderly using text mining, one of the big data analysis techniques. Method : For the analysis of newspaper articles, "Long - Term Care Insurance for the Elderly + Occupational Therapy for the Elderly" was collected after the period from 2007 to 208. Naver, which has a high share of the domestic search engine, utilized the database of Naver News by utilizing Textom, a web crawling tool. After collecting the article title and original text of 510 news data from the collection of the elderly long term care insurance + occupational therapy search, we analyzed the article frequency and key words by year. Result : In terms of the frequency of articles published by year, the number of articles published in 2015 and 2017 was the highest with 70 articles (13.7%), and the top 10 terms of the key word analysis showed the highest frequency of 'dementia' (344) In terms of key words, dementia, treatment, hospital, health, service, rehabilitation, facilities, institution, grade, elderly, professional, salary, industrial complex and people are related. Conclusion : In this study, it is meaningful that the textual mining technique was used to more objectively confirm the social needs and the role of the occupational therapist for the dementia and rehabilitation in the related key keywords based on the media reporting trend of the elderly long - term care insurance for 11 years. Based on the results of this study, future research should expand research field and period and supplement the research methodology through various analysis methods according to the year.

Changes in mathematics pedagogical lexicons: Extension research of the International Classroom Lexicon using a text mining approach (수학 교수학적 어휘의 변화: 텍스트 마이닝 기법을 이용한 교실수업 어휘 연구의 확장)

  • Lee, Gima;Kim, Hee-jeong
    • The Mathematical Education
    • /
    • v.61 no.4
    • /
    • pp.559-579
    • /
    • 2022
  • Research on lexicon and language provides insights into the interests, values and practices of a community where individuals use the language. The International Classroom Lexicon Project, in which ten countries participated, identified own country's mathematics teaching and learning lexicons by investigating mathematics classroom instruction from teachers' perspectives in a speaking-oriented community. This study, as an extension of the International Classroom Lexicon Project research, investigated pedagogical lexicons used in 「Mathematics and Education」 journals specialized for Korean professional mathematics teachers published by the Korean Society of Teachers of Mathematics. Using the text mining approach, we also traced how these pedegogical lexicons have changed quantitatively over the past 10 years with a diachronic perspective. As a results, several novel terms were found in the writing-oriented community, which were not identified in the speaking-oriented community. In addition, we could discover some pedagogical lexicons have increased statistically significantly and some lexicons appeared(increased) rapidly across years. This implies the teacher community's values and zeitgeist by reflecting these changes in the sociocultural, incidental and social changing (i.e., periodical change) contexts. This study has value as a first step in understanding zeitgeist for mathematics education in Korean mathematics teacher community according to changes of times over the past 10 years. Also, this study contributes to the methodological insights: the text mining technique provides a methodological contribution to researching changes in interests, values and zeitgeist according to these changes in the times.

Study on the Research Trend of Overseas Elderly Occupational Therapy Using Text Mining (텍스트마이닝을 활용한 국외 노인작업치료의 연구동향 분석)

  • Kim, Ah-Ram;Lee, Tae kwon;Jeong, In Jae;Park, Hae Yean
    • Therapeutic Science for Rehabilitation
    • /
    • v.10 no.1
    • /
    • pp.7-17
    • /
    • 2021
  • Objective : The purpose of this study was to quantitatively analyze the quantitative changes in, and the status of, overseas occupational therapy using text mining. Methods : Using PubMed, research papers on Elderly, Health and Occupational therapy published between 2009 and 2019 were selected for analysis, Abstracts of the selected papers were analyzed. The number of annual papers, the key words, the key words by year, and the relationship between the words were analyzed. Results : The number of papers published from 2009 to 2019 was 9,941, there was a gradual increase from 2009 to the highest in 2017 or 2018, followed by a decreasing trend in 2019. Within the last five years, the most frequent words were Care, Group, Intervention, Pain, Treatment, and Work. There was a strong relationship between the words based on the average frequency over the last 11 years, function, health, event, and partition. Conclusion : This study is meaningful because it applied a new research method called text mining to the empirical and systematic analysis of trends in occupational therapy and presented macroscopic and comprehensive results. The findings are expected to help establish new research directions at clinical and research sites for occupational therapy related to older adults.

An Analysis of Filter Bubble Phenomenon on YouTube Recommendation Algorithm Using Text Mining (텍스트 마이닝 기법을 이용한 유튜브 추천 알고리즘의 필터버블 현상 분석)

  • Shin, Yoo Jin;Lee, Sang Woo
    • The Journal of the Korea Contents Association
    • /
    • v.21 no.5
    • /
    • pp.1-10
    • /
    • 2021
  • This study empirically confirmed 'the political bias of the YouTube recommendation algorithm' and 'the selective exposure of user' to verify the Filter Bubble phenomenon of YouTube. For the experiment, two new YouTube accounts were opened and each account was trained simultaneously in a conservative and a liberal account for a week, and the "Recommended" videos were collected from each account every two days. Subsequently, through the text mining method, the goal of the research was to investigate whether conservative videos are more recommended in a righties account or lefties videos are more recommended in a lefties account. And then, this study examined if users who consumed political news videos via YouTube showed "selective exposure" received selected information according to their political orientation through a survey. As a result of the Text Mining, conservative videos are more recommended in the righties account, and liberal videos are more recommended in the lefties account. Additionally, most of the videos recommended in the righties/lefties account dealt with politically biased topics, and the topics covered in each account showed markedly definitive differences. And about 77% of the respondents showed selective exposure.

A study on the method of deriving the cause of social issues based on causal sentences (인과관계문형 기반 사회이슈 발생원인 도출 방법 연구)

  • Lee, Namyeon;Lee, Jae Hyung
    • Journal of Digital Convergence
    • /
    • v.19 no.3
    • /
    • pp.167-176
    • /
    • 2021
  • With development of big data analysis technology, many studies to find social issues using texts mining techniques have been conducted. In order to derive social issues, previous studies performed in a way that collects a large amount of text data from news or SNS, and then analyzes issues based on text mining techniques such as topic modeling and terms network analysis. Social issues are the results of various social phenomena and factors. However, since previous studies focused on deriving social issues that are results of various causes, there are limitations to revealing the cause of the issues. In order to effectively respond to social issues, it is necessary not only to derive social issues, but also to be able to identify the causes of social issues. In this study, in order to overcome these limitations, we proposed a method of deriving the factors that cause social issues from texts related to social issues based on the theory of part of Korean linguistics. To do this, we collected news data related to social issues for three years from 2017 to 2019 and proposed a methodology to find causes based causal sentences based on text mining techniques.

Trend Analysis of Fraudulent Claims by Long Term Care Institutions for the Elderly using Text Mining and BIGKinds (텍스트 마이닝과 빅카인즈를 활용한 노인장기요양기관 부당청구 동향 분석)

  • Youn, Ki-Hyok
    • Journal of Internet of Things and Convergence
    • /
    • v.8 no.2
    • /
    • pp.13-24
    • /
    • 2022
  • In order to explore the context of fraudulent claims and the measures for preventing them targeting the long-term care institutions for the elderly, which is increasing every year in Korea, this study conducted the text mining analysis using the media report articles. The media report articles were collected from the news big data analysis system called 'BIG KINDS' for about 15 years from July 2008 when the Long-Term Care Insurance for the Elderly took effect, to February 28th 2022. During this period of time, total 2,627 articles were collected under keywords like 'elderly care+fraudulent claims' and 'long-term care+fraudulent claims', and among them, total 946 articles were selected after excluding overlapped articles. In the results of the text mining analysis in this study, first, the top 10 keywords mentioned in the highest frequency in every section(July 1st 2008-February 28th 2022) were shown in the order of long-term care institution for the elderly, fraudulent claims, National Health Insurance Service, Long-Term Care Insurance for the Elderly, long-term care benefits(expenses), elderly care facilities, The Ministry of Health & Welfare, the elderly, report, and reward(payment). Second, in the results of the N-gram analysis, they were shown in the order of long-term care benefits(expenses) and fraudulent claims, fraudulent claims and long-care institution for the elderly, falsehood and fraudulent claims, report and reward(payment), and long-term care institution for the elderly and report. Third, the analysis of TF-IDF was similar to the results of the frequency analysis while the rankings of report, reward(payment), and increase moved up. Based on such results of the analysis above, this study presented the future direction for the prevention of fraudulent claims of long-term care institutions for the elderly.

Keyword Analysis of Research on Consumption of Children and Adolescents Using Text Mining (텍스트마이닝을 활용한 아동, 청소년 대상 소비관련 연구 키워드 분석)

  • Jin, Hyun-Jeong
    • Journal of Korean Home Economics Education Association
    • /
    • v.33 no.4
    • /
    • pp.1-13
    • /
    • 2021
  • The purpose of this study is to identify trends and potential themes of research on consumption of children and adolescents for 20 years by analyzing keywords. The keywords of 869 studies on consumption of children and adolescents published in journals listed in Korean Citation Index were analyzed using text mining techniques. The most frequent keywords were found in the order of youth, youth consumers, consumer education, conspicuous consumption, consumption behavior, and character. As a result of analyzing the frequency of keywords by dividing into five-year periods, it was confirmed that the frequency of consumer education was significantly higher betwn 2006 and 2010. Research on ethical consumption has been active since 2011, and research has been conducted on various topics instead of without a prominent keyword during the most recent 5-year period. Looking at the keywords based on the TF-IDF, the keywords related to the environment and the Internet were the main keywords between 2001 and 2005. From 2006 to 2010, the TF-IDF values of media use, advertisement education, and Internet items were high. From 2011 to 2015, fair trade, green growth, green consumption, North Korean defector youths, social media, and from 2016 to 2020, text mining, sustainable development education, maker education, and the 2015 revised curriculum appeared as important themes. As a result of topic modeling, eight topics were derived: consumer education, mass media/peer culture, rational consumption, Hallyu/cultural industry, consumer competency, economic education, teaching and learning method, and eco-friendly/ethical consumption. As a result of network analysis, it was found that conspicuous consumption and consumer education are important topics in consumption research of children and adolescents.

The Analysis of Research Trends in Social Service Quality Using Text Mining and Topic Modeling (텍스트 마이닝과 토픽모델링 활용한 사회서비스 품질의 학술연구 동향 분석)

  • Lee, Hae-Jung;Youn, Ki-Hyok
    • Journal of Internet of Things and Convergence
    • /
    • v.8 no.3
    • /
    • pp.29-40
    • /
    • 2022
  • The aim of this study was to analyze research trends of social service quality from 2007 to 2020 based on text mining and topic modeling. Our focus was to provide foundational materials for social service improvement by discovering the latent meaning of relevant research papers. We collected 97 scholarly articles on social service, social welfare service, and quality from RISS, and implemented two segments of text mining analysis. Our results showed that the first section included 38 papers and the second 59, indicating 6.9 articles annually. Word frequency results demonstrated that the common keywords of both sections were 'service', 'quality', 'social service', 'satisfaction', 'users', 'quality control', 'reuse', 'policy', 'voucher', etc. TF-IDF suggested that 'social service', 'satisfaction', 'users', 'customer satisfaction', 'revisiting', 'voucher', 'quality', 'assisted living facility', 'quality control', 'community service investment business', etc., were represented in both categories. Lastly, topic modeling analysis revealed that the first segment displayed 'types of care services', 'service costs', 'reuse', 'users based', and 'job creation', whereas the second presented 'service quality', 'public value', 'management system of human resources', 'service provision system', and 'service satisfaction'. Future directions of social service quality were discussed based on the results.