Purpose: In order to improve the audit quality of a company, an in-depth analysis is required to categorize the audit report in the form of a text document containing the details of the external audit. This study introduces a systematic methodology to extract keywords for each group that determines the differences between groups such as 'audit plan' and 'interim audit' using audit reports collected in the form of text documents. Methods: The first step of the proposed methodology is to preprocess the document through text mining. In the second step, the documents are classified into groups using machine learning techniques and based on this, important vocabularies that have a dominant influence on the performance of classification are extracted. In the third step, the association rules for each group's documents are found. In the last step, the final keywords for each group representing the characteristics of each group are extracted by comparing the important vocabulary for classification with the important vocabulary representing the association rules of each group. Results: This study quantitatively calculates the importance value of the vocabulary used in the audit report based on machine learning rather than the qualitative research method such as the existing literature search, expert evaluation, and Delphi technique. From the case study of this study, it was found that the extracted keywords describe the characteristics of each group well. Conclusion: This study is meaningful in that it has laid the foundation for quantitatively conducting follow-up studies related to key vocabulary in each stage of auditing.
Bsoul, Qusay;Abdul Salam, Rosalina;Atwan, Jaffar;Jawarneh, Malik
Journal of Information Science Theory and Practice
/
v.9
no.4
/
pp.15-34
/
2021
Text clustering is one of the most commonly used methods for detecting themes or types of documents. Text clustering is used in many fields, but its effectiveness is still not sufficient to be used for the understanding of Arabic text, especially with respect to terms extraction, unsupervised feature selection, and clustering algorithms. In most cases, terms extraction focuses on nouns. Clustering simplifies the understanding of an Arabic text like the text of the Quran; it is important not only for Muslims but for all people who want to know more about Islam. This paper discusses the complexity and limitations of Arabic text clustering in the Quran based on their themes. Unsupervised feature selection does not consider the relationships between the selected features. One weakness of clustering algorithms is that the selection of the optimal initial centroid still depends on chances and manual settings. Consequently, this paper reviews literature about the three major stages of Arabic clustering: terms extraction, unsupervised feature selection, and clustering. Six experiments were conducted to demonstrate previously un-discussed problems related to the metrics used for feature selection and clustering. Suggestions to improve clustering of the Quran based on themes are presented and discussed.
Considerable research efforts are being directed towards analyzing unstructured data such as text files and log files using commercial and noncommercial analytical tools. In particular, researchers are trying to extract meaningful knowledge through text mining in not only business but also many other areas such as politics, economics, and cultural studies. For instance, several studies have examined national pending issues by analyzing large volumes of text on various social issues. However, it is difficult to provide successful information services that can identify R&D documents on specific national pending issues. While users may specify certain keywords relating to national pending issues, they usually fail to retrieve appropriate R&D information primarily due to discrepancies between these terms and the corresponding terms actually used in the R&D documents. Thus, we need an intermediate logic to overcome these discrepancies, also to identify and package appropriate R&D information on specific national pending issues. To address this requirement, three methodologies are proposed in this study-a hybrid methodology for extracting and integrating keywords pertaining to national pending issues, a methodology for packaging R&D information that corresponds to national pending issues, and a methodology for constructing an associative issue network based on relevant R&D information. Data analysis techniques such as text mining, social network analysis, and association rules mining are utilized for establishing these methodologies. As the experiment result, the keyword enhancement rate by the proposed integration methodology reveals to be about 42.8%. For the second objective, three key analyses were conducted and a number of association rules between national pending issue keywords and R&D keywords were derived. The experiment regarding to the third objective, which is issue clustering based on R&D keywords is still in progress and expected to give tangible results in the future.
Asia-Pacific Journal of Business Venturing and Entrepreneurship
/
v.12
no.5
/
pp.1-12
/
2017
The purpose of this study is to investigate the trends of the start-up research in Korea. To accomplish this, meta-analysis was carried out using text mining methodology by dividing the entrepreneur-related master's and doctoral theses registered in RISS into the first term of entrepreneurship research by 2009 and the second term of entrepreneurship research from 2010. As a result of this study, it can be seen from the three different analysis that the entrepreneurship education and government policy and support are the subject of continuous research topics in the whole period and that the researches on small business start-ups have been studied continuously and conducted more in the second half. In addition, empirical analysis is strengthened in the latter stage of entrepreneurial research. The TF-IDF analysis reveals that many researches on veterans have been carried out in the field of entrepreneurship research, and in the latter period, it was found that many studies related to the elderly were conducted with cultural contents and aging society. In addition, research on brand-related research has been carried out throughout the entire period, and research on venture-related research, characteristics of entrepreneurs, entrepreneurship motivation and start-up strategy have been conducted a lot and female entrepreneurship was also studied. In the latter period, we have emphasized entrepreneurial achievements and found that research on start-ups such as industry-academia cooperation, start-up investment, and social enterprise diversified. This study is meaningful to apply the method which is becoming a recent issue such as text mining and topic analysis to the meta-analysis related to start-up. Future research will need to be undertaken on a variety of more detailed topics related to entrepreneurship.
Journal of the Korea Academia-Industrial cooperation Society
/
v.18
no.3
/
pp.586-599
/
2017
This study attempts to understand the overall research trends in Vocational Studies using a text mining method, which is a means to analyze big data. The findings of the research show that Vocational Studies in Korea has been directly influenced by global economic crises, as evidenced by its exponential growth after the 1997 foreign exchange crisis that resulted in a bailout from the IMF. In addition, the topics of research have been shifting from such macro subjects as government policies and systems to such micro topics as individual career development. Moreover, the perspective of research is being moved from the socially vulnerable, including women and the disabled, to the economically marginalized, including retirees and the unemployed. As for the research targets, college students overwhelmingly outnumbered primary and secondary school students. However, few cases analyzed the clinical outcomes of career counseling or attempted to process job information and study the history of jobs. This research is limited in that it only analyzed journal abstracts. Nonetheless, it is meaningful because it used topic analysis, one of the text mining methods, to give a complete enumeration of all articles available for search, thereby crafting a framework of quantitative analysis methodology for Vocational Studies. It is also significant in that it is the first attempt to analyze themes in every stage of the development of Vocational Studies.
Park, Boyoung;Oh, Kwan-Young;Lee, Jung-Ho;Yoon, Jung-Ho;Lee, Seung Kuk;Lee, Moung-Jin
Korean Journal of Remote Sensing
/
v.33
no.2
/
pp.189-199
/
2017
Thisstudy quantitatively analyzed the research trendsin the use ofICT ofthe environmental field using the text mining technique. To that end, the study collected 359 papers published in the past two decades(1996-2015)from the National Digital Science Library (NDSL) using 38 environment-related keywords and 16 ICT-related keywords. It processed the natural languages of the environment and ICT fields in the papers and reorganized the classification system into the unit of corpus. It conducted the text mining analysis techniques of frequency analysis, keyword analysis and the association rule analysis of keywords, based on the above-mentioned keywords of the classification system. As a result, the frequency of the keywords of 'general environment' and 'climate' accounted for 77 % of the total proportion and the keywords of 'public convergence service' and 'industrial convergence service' in the ICT field took up approximately 30 % of the total proportion. According to the time series analysis, the researches using ICT in the environmental field rapidly increased over the past 5 years (2011-2015) and the number of such researches more than doubled compared to the past (1996-2010). Based on the environmental field with generated association rules among the keywords, it was identified that the keyword 'general environment' was using 16 ICT-based technologies and 'climate' was using 14 ICT-based technologies.
This study identified terminologies related to the proximity and frequency of disaster by social network analysis (SNA) and text mining, and then expressed the outcome into a mind map. The termdocument matrix of text mining was utilized for the terminology proximity analysis, and the SNA closeness centrality was calculated to organically express the relationship of the terminologies through a mind map. By analyzing terminology proximity and selecting disaster response-related terminologies, this study identified the closest field among all the disaster response fields to disaster response and the core terms in each disaster response field. This disaster response terminology analysis could be utilized in future core term-based terminology standardization, disaster-related knowledge accumulation and research, and application of various response scenario compositions, among others.
Journal of the Korea Academia-Industrial cooperation Society
/
v.18
no.10
/
pp.215-226
/
2017
This study analyzed trends in agricultural and food marketing studies from 1984 to 2015 using text-mining techniques. Text-mining is a part of Big-data analysis, which is an effective tool to objectively process large amounts of information based on categorization and trend analysis. In the present study, frequency analysis, topic analysis and association rules were conducted. Titles of agricultural and food marketing studies in four journals and reports were used for placing the analysis. The results showed that 1,126 total theses related to agricultural and food marketing could be categorized into six subjects. There were significant changes in research trends before and after the 2000s. While research before 2000s focused on farm and wholesale level marketing, research after the 2000s mainly covered consumption, (processed)food, exports and imports. Local food and school meals are new subjects that are increasingly being studied. Issues regarding agricultural supply and demand were the only subjects investigated in policy research studies. Interest in agricultural supply and demand was lost after the 2000s. A number of studies after the 2010s analyzed consumption, primarily consumption trends and consumer behavior.
Journal of Korea Society of Industrial Information Systems
/
v.12
no.4
/
pp.138-147
/
2007
Metabolic pathway is a series of chemical reactions occuning within a cell and can be used for drug development and understanding of life phenomenon. Many biologists are trying to extract metabolic pathway information from huge literatures for their metabolic-circuit regulation study. We propose a text-mining technique based on the keyword and pattern. Proposed technique utilizes a web robot to collect huge papers and stores them into a local database. We use gene ontology to increase compound recognition rate and NCBI Tokenizer library to recognize useful information without compound destruction. Furthermore, we obtain useful sentence patterns representing metabolic pathway from papers and KEGG database. We have extracted 66 patterns in 20,000 documents for Glycosphingolipid species from KEGG, a representative metabolic database. We verify our system for nineteen compounds in Glycosphingolipid species. The result shows that the recall is 95.1%, the precision 96.3%, and the processing time 15 seconds. Proposed text mining system is expected to be used for metabolic pathway reconstruction.
The purpose of this study is to predict future of wage-peak system by using text mining, futures wheel and polarity voting (+, -) techniques after reviewing a variety of documents. For this study, we collected articles, news articles, SNS(Twitter, Blog), research report documents. Above all, we extracted keywords for main subject words by utilizing text mining techniques. Next, we drew a final conclusion about future of wage-peak system by using futures wheel and polarity voting techniques. The result showed that future of wage peak system is positive. Two of five main topics were negatively predicted (favor/oppose of wage-peak system, solving task of wage-peak system), however, three of five main topics were positively predicted (background of wage-peak system, purpose/reason of wage-peak system, alternative wage-peak system). Therefore, because three of the five main topics were positively predicted, the future for wage-peak system is positive.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.