• Title/Summary/Keyword: TextMining

Search Result 1,563, Processing Time 0.037 seconds

Regional Image Change Analysis using Text Mining and Network Analysis (텍스트 마이닝과 네트워크 분석을 이용한 지역 이미지 변화 분석)

  • Jeong, Eun-Hee
    • The Journal of Korea Institute of Information, Electronics, and Communication Technology
    • /
    • v.15 no.2
    • /
    • pp.79-88
    • /
    • 2022
  • Social media big data includes a lot of information that can identify not only consumer consumption patterns but also local images. This paper was collected annually data including 'Samcheok' from 2015 to 2019 from Blog and Cafe of Naver and Daum in domestic portal site, and analyzed the regional image change after refining keyword which forms the regional image by performing text mining and network analysis. According to the research results, the regional image of 2015 was expressed with image cognitive elements of the nearby place name or place etc. such as 'Jangho Port', 'Donghae', and 'Beach'. However the regional image both 2016 and 2019 were changed with image cognitive elements of 'SamcheokSolbich' which is a special place within region. Therefore as the keywords related to the local image include 'Jangho Port' and Resort, which are the representative attractions of Samcheok, it can be seen that the infrastructure factor plays a big role in forming the local image. The significance test for the network data used the bootstrap technique, and the p-values in 2015, 2016, and 2019 were 0.0002, 0.0006, and 0.0002, respectively, which were found to be statistically significant at the significance level of 5%.

Topic Analysis of the "Right to be Forgotten" Using Text Mining (텍스트마이닝을 활용한 "잊힐 권리"의 토픽 분석)

  • Lee, So-Hyun;Koo, Bon-Jin
    • Journal of the Korean Society for information Management
    • /
    • v.39 no.2
    • /
    • pp.275-298
    • /
    • 2022
  • This study examined the issues and characteristics that appeared in news and journal articles related to the 'right to be forgotten' using text mining analysis. Data for analysis were collected from 2010 to 2020 with the keyword 'right to be forgotten'. Keyword analysis and topic modeling analysis were performed on the collected data. As a result, in the last 10 years the issues about 'right to be forgotten' are not much different in news and journal articles and the approaches also are similar. However, it confirmed common issues and the partial difference between news and journal articles through comparison. Therefore in Archives and Records Management Studies, it is necessary to discuss derived in this study. In particular common issues are considered first but if there are differences in issues, it is needed to discuss them in various ways. This study is meaningful to understand the meaning and to draw issues that may arise in the future of the 'right to be forgotten'. The results of this study will contribute to be variously discussed on the 'right to be forgotten' in Archives and Records Management Studies.

A Study on the Direction of Development of Related Policies with Game-related Issue Analysis: Using Text Mining and Spline Function Analysis of Newspaper Articles (게임 관련 이슈 분석을 통한 관련 정책 발전 방향에 관한 연구: 운형함수와 텍스트마이닝 분석을 활용하여)

  • Jang, You-mi;Yoo, Han-byeol
    • The Journal of the Korea Contents Association
    • /
    • v.22 no.3
    • /
    • pp.513-528
    • /
    • 2022
  • The purpose of this study is to analyze Korean game-related issues and policies to increase the effectiveness of related policies in the future and to increase the consistency of social norms of the policies. this study analyzes related issues by analyzing changes in Korean newspaper articles using spline function and text mining methods, and analyzes the contents of newspaper articles at the time of amplification of issues to present major issues and development directions. As a result of the analysis, game-related issues appeared in various topic, and there are not only support from the government and local governments but also coexisted with game-related regulations (taxation, gambling regulations, game addiction disease, and prevention of fee expansion). Despite regulations, the government presents preemptive responses to problems caused by the application of metabuses and NFTs to games, fostering game-related experts, start-up support, and supporting manpower departure as policy implications.

Exploring the Direction of Digital Platform Government by Text Mining Technique: Lessons from the Fourth Industrial Revolution Agenda (텍스트마이닝을 통한 디지털플랫폼정부의 방향 모색: 4차산업혁명시대 담론으로부터의 교훈)

  • Park, Soo-Kyung;Cho, Ji-Yeon;Lee, Bong-Gyou
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.22 no.5
    • /
    • pp.139-146
    • /
    • 2022
  • Recently, solving industrial and social problems and creating new values based on big data and AI is being discussed as the main policy goal. The new government also set the digital platform government as a national task in order to achieve new value creation based on big data and AI. However, studies that summarize and diagnose discussions over the past five years are insufficient. Therefore, this study diagnoses the discussions over the past 5 years using the 4th industrial revolution as a keyword. After collecting news editorials from 2017 to 2022 by applying the text mining technique, 9 major topics were discovered. In conclusion, this study provided implications for the government's task to prepare for the future society.

A Text Mining Analysis on Students' Perceptions about Capstone Design: Case of Industrial & Management Engineering (텍스트 마이닝을 활용한 캡스톤 디자인에 관한 학생 인식 탐색: 산업경영공학 사례)

  • Wi, Gwang-Ho;Kim, Yun-jin;Kim, Moon-Soo
    • Journal of Engineering Education Research
    • /
    • v.25 no.5
    • /
    • pp.85-93
    • /
    • 2022
  • Capstone Design, a project-based learning technique, is the most important curriculum that clarifying major knowledge and cultivating the ability to apply through the process of solving problems in the industrial field centered on the student project team. Accordingly, various and extensive studies are being conducted for the successful implementation of capstone design courses. Unlike previous studies, this study aimed to quantitatively analyze the opinions that recorded the experiences and feelings of students who performed capstone design, and used text mining methodologies such as frequency analysis, correlation analysis, topic modeling, and sentiment analysis. As a result of examining the overall opinions of the latter period through frequency analysis and correlation analysis, there was a difference between the languages used by the students in the opinions according to gender and project results. Through topic modeling analysis, 'topic selection' and 'the relationship between team members' showed an increase in occupancy or high occupancy, and topics such as 'presentation', 'leadership', and 'feeling what they felt' showed a tendency to decreasing occupancy. Lastly, sentiment analysis has found that female students showed more neutral emotions than male students, and the passed group showed more negative emotions than the non-passed group and less neutral emotions. Based on these findings, students' practical recognition of the curriculum was considered and implications for the improvement of capstone design were presented.

A Exploratory Analysis on Knowledge Structure of Untact Research (언택트 연구의 지식구조에 대한 탐색적 분석)

  • Kim, SeongMook;Cha, HyunHee
    • The Journal of the Convergence on Culture Technology
    • /
    • v.7 no.2
    • /
    • pp.367-375
    • /
    • 2021
  • This study aimed to identify the knowledge structure of researches on 'untact' and derived implications for directions for the studies using text mining. The study included network analysis and topic modelling of keywords and abstracts from 171 thesis published until October 2020. Centrality analysis showed that 'untact' studies had been focused on service, usage, consumption, technology and online. From the topic modelling, 6 topics such as 'COVID-19 and socio-technological change', 'needs and utilization of education contents', 'technology and service for user convenience', 'product marketing and sales', 'service design of the company', 'influence factors of usage and consumption' were extracted. Keywords that connect each topic were technology, service, usage, consumption, needs and factor. Exploratory analysis of 'untact' researches using text mining provides useful results for development of 'untact' studies.

Perception Survey about SMEs Employment of University Students in Chungbuk Area: Based on Text-mining (충북지역 대학생의 중소기업 취업에 대한 인식조사: 텍스트마이닝을 기반으로)

  • Choi, Dabin;Choi, Wooseok;Choi, Sanghyun;Lee, Junghwan
    • Korean small business review
    • /
    • v.42 no.4
    • /
    • pp.235-250
    • /
    • 2020
  • This study surveyed the perception of university students about employment in Small and Medium-sized Enterprises(SME) in the Chungbuk area to prepare improvement measures. In particular, the data were collected in descriptive questions along with the existing survey methods, and the perception of SME and decent work was identified using text-mining. As a result of the analysis, there are positive perceptions of jobs at SME such as various work experiences and low job competition rates, while there are generally many negative perceptions in pay, work and welfare. However, as a result of co-occurrence network analysis of responses to decent jobs, 'Information' was derived as a keyword. Currently, college students' negative perception of SME is affected by the lack of sufficient information, which needs to be improved first. To solve this problem, it was proposed to establish and operate a platform that can provide information on employment of SME and select necessary personnel.

BEHIND CHICKEN RATINGS: An Exploratory Analysis of Yogiyo Reviews Through Text Mining (치킨 리뷰의 이면: 텍스트 마이닝을 통한 리뷰의 탐색적 분석을 중심으로)

  • Kim, Jungyeom;Choi, Eunsol;Yoon, Soohyun;Lee, Youbeen;Kim, Dongwhan
    • The Journal of the Korea Contents Association
    • /
    • v.21 no.11
    • /
    • pp.30-40
    • /
    • 2021
  • Ratings and reviews, despite their growing influence on restaurants' sales and reputation, entail a few limitations due to the burgeoning of reviews and inaccuracies in rating systems. This study explores the texts in reviews and ratings of a delivery application and discovers ways to elevate review credibility and usefulness. Through a text mining method, we concluded that the delivery application 'Yogiyo' has (1) a five-star oriented rating dispersion, (2) a strong positive correlation between rating factors (taste, quantity, and delivery) and (3) distinct part of speech and morpheme proportions depending on review polarity. We created a chicken-specialized negative word dictionary under four main topics and 20 sub-topic classifications after extracting a total of 367 negative words. We provide insights on how the research on delivery app reviews should progress, centered on fried chicken reviews.

Social perception of the Arduino lecture as seen in big data (빅데이터 분석을 통한 아두이노 강의에 대한 사회적 인식)

  • Lee, Eunsang
    • Journal of The Korean Association of Information Education
    • /
    • v.25 no.6
    • /
    • pp.935-945
    • /
    • 2021
  • The purpose of this study is to analyze the social perception of Arduino lecture using big data analysis method. For this purpose, data from January 2012 to May 2021 were collected using the Textom website as a keyword searched for 'arduino + lecture' in blogs, cafes, and news channels of NAVER website. The collected data was refined using the Textom website, and text mining analysis and semantic network analysis were performed by opening the Textom website, Ucinet 6, and Netdraw programs. As a result of text mining analysis such as frequency analysis, TF-IDF analysis, and degree centrality it was confirmed that 'education' and 'coding' were the top keywords. As a result of CONCOR analysis for semantic network analysis, four clusters can be identified: 'Arduino-related education', 'Physical computing-related lecture', 'Arduino special lecture', and 'GUI programming'. Through this study, it was possible to confirm various meaningful social perceptions of the general public in relation to Arduino lecture on the Internet. The results of this study will be used as data that provides meaningful implications for instructors preparing for Arduino lectures, researchers studying the subject, and policy makers who establish software education or coding education and related policies.

A Big Data Analysis of Public Interest in Defense Reform 2.0 and Suggestions for Policy Completion

  • Kim, Tae Kyoung;Kang, Wonseok
    • Journal of East Asia Management
    • /
    • v.4 no.1
    • /
    • pp.1-22
    • /
    • 2023
  • This study conducted a big data analysis study through text mining and semantic network analysis to explore the perception of defense reform 2.0. The collected data were analyzed with the top 70 keywords as the appropriate range for network visualization. Through word frequency analysis, connection centrality analysis, and an N-gram analysis, we identified issues that received much attention such as troop reduction, shortening of military service period, dismantling of the border area unit, and returning wartime operational control. In particular, the results of clustering words through CONCOR analysis showed that there was a great interest in pursuing the technical group, concerns about military capacity reduction, and reorganization of manpower structure. The results of the analysis through text mining techniques are as follows. First, it was found that there was a lack of awareness about measures to reinforce the reduced troops while receiving much attention to the reduction of troops in Defense Reform 2.0. Second, it was found that it is necessary to actively communicate with the local community due to the deconstruction and movement of the border area units, such as the decrease of the population of the region and the collapse of the local commercial area. Third, it was judged that it is necessary to show substantial results through the promotion of barracks culture and the defense industry, which showed that there was less interest than military structure and defense operation from the people and the introduction of active policies. Through this study, we analyzed the public's interest in defense reform 2.0, which is a representative defense policy, and suggested a plan to draw support for national policy.