• Title/Summary/Keyword: TextMining

Search Result 1,563, Processing Time 0.023 seconds

A Big Data Study on Viewers' Response and Success Factors in the D2C Era Focused on tvN's Web-real Variety 'SinSeoYuGi' and Naver TV Cast Programming

  • Oh, Sejong;Ahn, Sunghun;Byun, Jungmin
    • International Journal of Advanced Culture Technology
    • /
    • v.4 no.2
    • /
    • pp.7-18
    • /
    • 2016
  • The first D2C-era web-real variety show in Korea was broadcast via tvN of CJ E&M. The web-real variety program 'SinSeoYuGi' accumulated 54 million views, along with 50 million views at the Chinese portal site QQ. This study carries out an analysis using text mining that extracts portal site blogs, twitter page views and associative terms. In addition, this study derives viewers' response by extracting key words with opinion mining techniques that divide positive words, neutral words and negative words through customer sentiment analysis. It is found that the success factors of the web-real variety were reduced in appearance fees and production cost, harmony between actual cast members and scenario characters, mobile TV programing, and pre-roll advertising. It is expected that web-real variety broadcasting will increase in value as web contents in the future, and be established as a new genre with the job of 'technical marketer' growing as well.

Big Data Analysis of the Women Who Score Goal Sports Entertainment Program: Focusing on Text Mining and Semantic Network Analysis.

  • Hyun-Myung, Kim;Kyung-Won, Byun
    • International Journal of Internet, Broadcasting and Communication
    • /
    • v.15 no.1
    • /
    • pp.222-230
    • /
    • 2023
  • The purpose of this study is to provide basic data on sports entertainment programs by collecting data on unstructured data generated by Naver and Google for SBS entertainment program 'Women Who Score Goal', which began regular broadcast in June 2021, and analyzing public perceptions through data mining, semantic matrix, and CONCOR analysis. Data collection was conducted using Textom, and 27,911 cases of data accumulated for 16 months from June 16, 2021 to October 15, 2022. For the collected data, 80 key keywords related to 'Kick a Goal' were derived through simple frequency and TF-IDF analysis through data mining. Semantic network analysis was conducted to analyze the relationship between the top 80 keywords analyzed through this process. The centrality was derived through the UCINET 6.0 program using NetDraw of UCINET 6.0, understanding the characteristics of the network, and visualizing the connection relationship between keywords to express it clearly. CONCOR analysis was conducted to derive a cluster of words with similar characteristics based on the semantic network. As a result of the analysis, it was analyzed as a 'program' cluster related to the broadcast content of 'Kick a Goal' and a 'Soccer' cluster, a sports event of 'Kick a Goal'. In addition to the scenes about the game of the cast, it was analyzed as an 'Everyday Life' cluster about training and daily life, and a cluster about 'Broadcast Manipulation' that disappointed viewers with manipulation of the game content.

Investigation of Topic Trends in Computer and Information Science by Text Mining Techniques: From the Perspective of Conferences in DBLP (텍스트 마이닝 기법을 이용한 컴퓨터공학 및 정보학 분야 연구동향 조사: DBLP의 학술회의 데이터를 중심으로)

  • Kim, Su Yeon;Song, Sung Jeon;Song, Min
    • Journal of the Korean Society for information Management
    • /
    • v.32 no.1
    • /
    • pp.135-152
    • /
    • 2015
  • The goal of this paper is to explore the field of Computer and Information Science with the aid of text mining techniques by mining Computer and Information Science related conference data available in DBLP (Digital Bibliography & Library Project). Although studies based on bibliometric analysis are most prevalent in investigating dynamics of a research field, we attempt to understand dynamics of the field by utilizing Latent Dirichlet Allocation (LDA)-based multinomial topic modeling. For this study, we collect 236,170 documents from 353 conferences related to Computer and Information Science in DBLP. We aim to include conferences in the field of Computer and Information Science as broad as possible. We analyze topic modeling results along with datasets collected over the period of 2000 to 2011 including top authors per topic and top conferences per topic. We identify the following four different patterns in topic trends in the field of computer and information science during this period: growing (network related topics), shrinking (AI and data mining related topics), continuing (web, text mining information retrieval and database related topics), and fluctuating pattern (HCI, information system and multimedia system related topics).

Neural Text Categorizer for Exclusive Text Categorization

  • Jo, Tae-Ho
    • Journal of Information Processing Systems
    • /
    • v.4 no.2
    • /
    • pp.77-86
    • /
    • 2008
  • This research proposes a new neural network for text categorization which uses alternative representations of documents to numerical vectors. Since the proposed neural network is intended originally only for text categorization, it is called NTC (Neural Text Categorizer) in this research. Numerical vectors representing documents for tasks of text mining have inherently two main problems: huge dimensionality and sparse distribution. Although many various feature selection methods are developed to address the first problem, the reduced dimension remains still large. If the dimension is reduced excessively by a feature selection method, robustness of text categorization is degraded. Even if SVM (Support Vector Machine) is tolerable to huge dimensionality, it is not so to the second problem. The goal of this research is to address the two problems at same time by proposing a new representation of documents and a new neural network using the representation for its input vector.

Analysis of trends in mathematics education research using text mining (토픽 모델링 분석을 통한 수학교육 연구 주제 분석)

  • Jin, Mireu;Ko, Ho Kyoung
    • Communications of Mathematical Education
    • /
    • v.33 no.3
    • /
    • pp.275-294
    • /
    • 2019
  • In order to understand the recent trends in mathematics education research papers, data mining method was applied to analyze journals of the mathematics education posterior to the year of 2016. Text mining method is useful in the sense that it utilizes statistical approach to understand the linkages and influencing relationship between concepts and deriving the meaning that data shows by visualizing the process. Therefore, this research analyzed the key words largely mentioned in the recent mathematics education journals. Also the correlation between the subjects of mathematics education was deduced by using topic modeling. By using the trend analysis tool it is possible to understand the vital point which researchers consider it as important in recent mathematics education area and at the same time we tried to use it as a fundamental data to decide the upcoming research topic that is worth noticing.

A Study on the Trend Analysis Based on Personal Information Threats Using Text Mining (텍스트 마이닝을 활용한 개인정보 위협기반의 트렌드 분석 연구)

  • Kim, Young-Hee;Lee, Taek-Hyun;Kim, Jong-Myoung;Park, Won-Hyung;Koo, Kwang-Ho
    • Convergence Security Journal
    • /
    • v.19 no.2
    • /
    • pp.29-38
    • /
    • 2019
  • For that reason, trend research has been actively conducted to identify and analyze the key topics in large amounts of data and information. Also personal information protection field is increasing activities in order to identify prospects and trends in advance for preemptive response. However, only research based on technology such as trends in information security field and personal information protection solution is broadly taking place. In this study, threat-based trends in personal information protection field is analyzed through text mining method. This will be the key to deduct undiscovered issues and provide visibility of current and future trends. Policy formulation is possible for companies handling personal information and for that reason, it is expected to be used for searching direction of strategy establishment for effective response.

Individual Interests Tracking : Beyond Macro-level Issue Tracking (거시적 이슈 트래킹의 한계 극복을 위한 개인 관심 트래킹 방법론)

  • Liu, Chen;Kim, Namgyu
    • Journal of Information Technology Services
    • /
    • v.13 no.4
    • /
    • pp.275-287
    • /
    • 2014
  • Recently, the volume of unstructured text data generated by various social media has been increasing rapidly; consequently, the use of text mining to support decision-making has also been growing. In particular, academia and industry are paying significant attention to topic analysis in order to discover the main issues from a large volume of text documents. Topic analysis can be regarded as static analysis because it analyzes a snapshot of the distribution of various issues. In contrast, some recent studies have attempted to perform dynamic issue tracking, which analyzes and traces issue trends during a predefined period. However, most traditional issue tracking methods have a common limitation : when a new period is included, topic analysis must be repeated for all the documents of the entire period, rather than being conducted only on the new documents of the added period. Additionally, traditional issue tracking methods do not concentrate on the transition of individuals' interests from certain issues to others, although the methods can illustrate macro-level issue trends. In this paper, we propose an individual interests tracking methodology to overcome the two limitations of traditional issue tracking methods. Our main goal is not to track macro-level issue trends but to analyze trends of individual interests flow. Further, our methodology has extensible characteristics because it analyzes only newly added documents when the period of analysis is extended. In this paper, we also analyze the results of applying our methodology to news articles and their access logs.

Financial Instruments Recommendation based on Classification Financial Consumer by Text Mining Techniques (비정형 데이터 분석을 통한 금융소비자 유형화 및 그에 따른 금융상품 추천 방법)

  • Lee, Jaewoong;Kim, Young-Sik;Kwon, Ohbyung
    • Journal of Information Technology Services
    • /
    • v.15 no.4
    • /
    • pp.1-24
    • /
    • 2016
  • With the innovation of information technology, non-face-to-face robo advisor with high accessibility and convenience is spreading. The current robot advisor recommends appropriate investment products after understanding the investment propensity based on the structured data entered directly or indirectly by individuals. However, it is an inconvenient and obtrusive way for financial consumers to inquire or input their own subjective propensity to invest. Hence, this study proposes a way to deduce the propensity to invest in unstructured data that customers voluntarily exposed during consultation or online. Since prediction performance based on unstructured document differs according to the characteristics of text, in this study, classification algorithm optimized for the characteristic of text left by financial consumers is selected by performing prediction performance evaluation of various learning discrimination algorithms and proposed an intelligent method that automatically recommends investment products. User tests were given to MBA students. After showing the recommended investment and list of investment products, satisfaction was asked. Financial consumers' satisfaction was measured by dividing them into investment propensity and recommendation goods. The results suggest that the users high satisfaction with investment products recommended by the method proposed in this paper. The results showed that it can be applies to non-face-to-face robo advisor.

Research of Patent Technology Trends in Textile Materials: Text Mining Methodology Using DETM & STM (섬유소재 분야 특허 기술 동향 분석: DETM & STM 텍스트마이닝 방법론 활용)

  • Lee, Hyun Sang;Jo, Bo Geun;Oh, Se Hwan;Ha, Sung Ho
    • The Journal of Information Systems
    • /
    • v.30 no.3
    • /
    • pp.201-216
    • /
    • 2021
  • Purpose The purpose of this study is to analyze the trend of patent technology in textile materials using text mining methodology based on Dynamic Embedded Topic Model and Structural Topic Model. It is expected that this study will have positive impact on revitalizing and developing textile materials industry as finding out technology trends. Design/methodology/approach The data used in this study is 866 domestic patent text data in textile material from 1974 to 2020. In order to analyze technology trends from various aspect, Dynamic Embedded Topic Model and Structural Topic Model mechanism were used. The word embedding technique used in DETM is the GloVe technique. For Stable learning of topic modeling, amortized variational inference was performed based on the Recurrent Neural Network. Findings As a result of this analysis, it was found that 'manufacture' topics had the largest share among the six topics. Keyword trend analysis found the fact that natural and nanotechnology have recently been attracting attention. The metadata analysis results showed that manufacture technologies could have a high probability of patent registration in entire time series, but the analysis results in recent years showed that the trend of elasticity and safety technology is increasing.

The Impact of Transforming Unstructured Data into Structured Data on a Churn Prediction Model for Loan Customers

  • Jung, Hoon;Lee, Bong Gyou
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.14 no.12
    • /
    • pp.4706-4724
    • /
    • 2020
  • With various structured data, such as the company size, loan balance, and savings accounts, the voice of customer (VOC), which is text data containing contact history and counseling details was analyzed in this study. To analyze unstructured data, the term frequency-inverse document frequency (TF-IDF) analysis, semantic network analysis, sentiment analysis, and a convolutional neural network (CNN) were implemented. A performance comparison of the models revealed that the predictive model using the CNN provided the best performance with regard to predictive power, followed by the model using the TF-IDF, and then the model using semantic network analysis. In particular, a character-level CNN and a word-level CNN were developed separately, and the character-level CNN exhibited better performance, according to an analysis for the Korean language. Moreover, a systematic selection model for optimal text mining techniques was proposed, suggesting which analytical technique is appropriate for analyzing text data depending on the context. This study also provides evidence that the results of previous studies, indicating that individual customers leave when their loyalty and switching cost are low, are also applicable to corporate customers and suggests that VOC data indicating customers' needs are very effective for predicting their behavior.