• Title/Summary/Keyword: TextMining

Search Result 1,563, Processing Time 0.025 seconds

A Study on Research Trends in Metaverse Platform Using Big Data Analysis (빅데이터 분석을 활용한 메타버스 플랫폼 연구 동향 분석)

  • Hong, Jin-Wook;Han, Jung-Wan
    • Journal of Digital Convergence
    • /
    • v.20 no.5
    • /
    • pp.627-635
    • /
    • 2022
  • As the non-face-to-face situation continues for a long time due to COVID-19, the underlying technologies of the 4th industrial revolution such as IOT, AR, VR, and big data are affecting the metaverse platform overall. Such changes in the external environment such as society and culture can affect the development of academics, and it is very important to systematically organize existing achievements in preparation for changes. The Korea Educational Research Information Service (RISS) collected data including the 'metaverse platform' in the keyword and used the text mining technique, one of the big data analysis. The collected data were analyzed for word cloud frequency, connection strength between keywords, and semantic network analysis to examine the trends of metaverse platform research. As a result of the study, keywords appeared in the order of 'use', 'digital', 'technology', and 'education' in word cloud analysis. As a result of analyzing the connection strength (N-gram) between keywords, 'Edue→Tech' showed the highest connection strength and a total of three clusters of word chain clusters were derived. Detailed research areas were classified into five areas, including 'digital technology'. Considering the analysis results comprehensively, It seems necessary to discover and discuss more active research topics from the long-term perspective of developing a metaverse platform.

Trend Analysis of Sports for All-Related Issues in Early Stage of COVID-19 Using Topic Modeling (토픽 모델링을 활용한 코로나19 초기 생활체육 이슈 분석)

  • Chung, Yunkil;Seo, Sumin;Kang, Hyunmin
    • Journal of Intelligence and Information Systems
    • /
    • v.28 no.3
    • /
    • pp.57-79
    • /
    • 2022
  • COVID-19, which started in December 2019, has had a great impact on our lives in general, including politics, economy, society, and culture, and activities in sports and arts have also been significantly reduced. In the case of sports, sports for all fields in which ordinary citizens participate were particularly affected, and cases of infection in places closely related to people's lives, such as gyms, table tennis, and badminton clubs, also amplified the social fear of the spread of COVID-19. Therefore, in this study, we analyzed news articles related to sports for all at the time when COVID-19 was first spread, and investigated what issues were emerging and being discussed in the sports for all field under the COVID-19 situation. Specifically, we collected news articles dealt with sports for all issues under the COVID-19 situation from Korea's leading portal news sites and identified key sports for all issues by performing topic modeling on these articles. Through the analysis, we found meaningful issues such as COVID-19 outbreak in sports facilities and support for sports activities. In addition, through wordcloud analysis of these major issues, we visually understood the issues and identified the changes in these issues over time.

Civic Participation in Smart City : A Role and Direction (스마트도시 구현을 위한 시민참여의 역할과 방향에 관한 연구)

  • Nam, Woo-Min;Park, Keon Chul
    • Journal of Internet Computing and Services
    • /
    • v.23 no.6
    • /
    • pp.79-86
    • /
    • 2022
  • This study aims to analyze the research trends on the civic participation in a smart city and to present implications to policy makers, industry professionals and researchers. As rapid urbanization is defining development trend of modern city, urban problems such as transportation, environment, and energy are spreading and intensifying around the city. Countries around the world are introducing smart cities to solve these urban problems and to achieve sustainable development. Recently, many countries are modifying urban planning from top-down to down-up by actively engaging citizens to participate in the urban construction process directly and indirectly. Although the construction of smart cities is being promoted in Korea to solve urban problems, awareness of smart cities and civic participation are low. In order to overcome this situation, discussions on ideas and methods that can increase civic participation in smart cities are continuously being conducted. Therefore, in this study, by collecting publication containing both 'Smart Cities' and 'Participation (Engagement)' in Scopus DB, the topics of related studies were categorized and research trends were analyzed using topic modeling. Through this study, it is expected that it can be used as evidence to understand the direction of civic participation research in smart cities and to present the direction of related research in the future.

Proposal of Promotion Strategy of Mobile Easy Payment Service Using Topic Modeling and PEST-SWOT Analysis (모바일 간편 결제 서비스 활성화 전략 : 토픽 모델링과 PEST - SWOT 분석 방법론을 기반으로)

  • Park, Seongwoo;Kim, Sehyoung;Kang, Juyoung
    • Journal of Intelligence and Information Systems
    • /
    • v.28 no.4
    • /
    • pp.365-385
    • /
    • 2022
  • The easy payment service is a payment and remittance service that uses a simple authentication method. As online transactions have increased due to COVID-19, the use of an easy payment service is increasing. At the same time, electronic financial industries such as Naver Pay, Kakao Pay, and Toss are diversifying the competition structure of the easy payment market; meanwhile overseas fintech companies PayPal and Alibaba have a unique market share in their own countries, while competition is intensifying in the domestic easy payment market, as there is no unique market share. In this study, the participants in the easy payment market were classified as electronic financial companies, mobile phone manufacturers, and financial companies, and a SWOT analysis was conducted on the representative services in each industry. The analysis examined the user reviews of Google Play Store via a topic modeling analysis, and it employed positive topics as strengths and negative topics as weaknesses. In addition, topic modeling was conducted by dividing news articles into political, economic, social, and technology (PEST) articles to derive the opportunities and threats to easy payment services. Through this research, we intend to confirm the service capabilities of easy payment companies and propose a service activation strategy that allows gaining the upper hand in the market.

Analysis of domestic and foreign future automobile research trends based on topic modeling (토픽모델링 기반의 국내외 미래 자동차 연구동향 비교 분석: CASE 키워드 중심으로)

  • Jeong, Ho Jeong;Kim, Keun-Wook;Kim, Na-Gyeong;Chang, Won-Jun;Jeong, Won-Oong;Park, Dae-Yeong
    • Journal of Digital Convergence
    • /
    • v.20 no.5
    • /
    • pp.463-476
    • /
    • 2022
  • After industrialization in the past, the automobile industry has continued to grow centered on internal combustion engines, but is facing a major change with the recent 4th industrial revolution. Most companies are preparing for the transition to electric vehicles and autonomous driving. Therefore, in this study, topic modeling was performed based on LDA algorithm by collecting 4,002 domestic papers and 68,372 overseas papers that contain keywords related to CASE (Connectivity, Autonomous, Sharing, Electrification), which represent future automobile trends. As a result of the analysis, it was found that domestic research mainly focuses on macroscopic aspects such as traffic infrastructure, urban traffic efficiency, and traffic policy. Through this, the government's technical support for MaaS (Mobility-as-a-Service) is required in the domestic shared car sector, and the need for data opening by means of transportation was presented. It is judged that these analysis results can be used as basic data for the future automobile industry.

Development of Scaffolding Strategies Model by Information Search Process (ISP) (정보탐색과정(ISP)에 의한 스캐폴딩 전략 모형 개발)

  • Jeong-Hoon Lim
    • Journal of Korean Library and Information Science Society
    • /
    • v.54 no.1
    • /
    • pp.143-165
    • /
    • 2023
  • This study aims to propose a scaffolding strategy that can be applied to the information search process by using Kuhlthau's ISP model, which presented a design and implementation strategy for the mediation role in the learning process. To this end, the relevant literature was reviewed to categorize scaffolding strategies, and impressions were collected from the students surveys after providing 150 middle school students in the Daejeon area with the project class to which the scaffolding strategy based on the ISP model was applied. The collected data were processed into a form suitable for analysis through data preprocessing for word frequencies to be extracted, and topic analysis was performed using STM (Structural Topic Modeling). First, after determining the optimal number of topics and extracting topics for each stage of the ISP model, the extracted topics were classified into three types: cognitive domain-macro perspective, cognitive domain-micro perspective, and emotional domain perspective. In this process, we focused on cognitive verbs and emotional verbs among words extracted through text mining, and presented a scaffolding strategy model related to each topic by reviewing representative document cases. Based on the results of this study, if an appropriate scaffolding strategy is provided at the ISP model stage, a positive effect on learners' self-directed task solving can be expected.

A Comparative Research on End-to-End Clinical Entity and Relation Extraction using Deep Neural Networks: Pipeline vs. Joint Models (심층 신경망을 활용한 진료 기록 문헌에서의 종단형 개체명 및 관계 추출 비교 연구 - 파이프라인 모델과 결합 모델을 중심으로 -)

  • Sung-Pil Choi
    • Journal of the Korean Society for Library and Information Science
    • /
    • v.57 no.1
    • /
    • pp.93-114
    • /
    • 2023
  • Information extraction can facilitate the intensive analysis of documents by providing semantic triples which consist of named entities and their relations recognized in the texts. However, most of the research so far has been carried out separately for named entity recognition and relation extraction as individual studies, and as a result, the effective performance evaluation of the entire information extraction systems was not performed properly. This paper introduces two models of end-to-end information extraction that can extract various entity names in clinical records and their relationships in the form of semantic triples, namely pipeline and joint models and compares their performances in depth. The pipeline model consists of an entity recognition sub-system based on bidirectional GRU-CRFs and a relation extraction module using multiple encoding scheme, whereas the joint model was implemented with a single bidirectional GRU-CRFs equipped with multi-head labeling method. In the experiments using i2b2/VA 2010, the performance of the pipeline model was 5.5% (F-measure) higher. In addition, through a comparative experiment with existing state-of-the-art systems using large-scale neural language models and manually constructed features, the objective performance level of the end-to-end models implemented in this paper could be identified properly.

A Study on the Enhancing Recommendation Performance Using the Linguistic Factor of Online Review based on Deep Learning Technique (딥러닝 기반 온라인 리뷰의 언어학적 특성을 활용한 추천 시스템 성능 향상에 관한 연구)

  • Dongsoo Jang;Qinglong Li;Jaekyeong Kim
    • Journal of Intelligence and Information Systems
    • /
    • v.29 no.1
    • /
    • pp.41-63
    • /
    • 2023
  • As the online e-commerce market growing, the need for a recommender system that can provide suitable products or services to customer is emerging. Recently, many studies using the sentiment score of online review have been proposed to improve the limitations of study on recommender systems that utilize only quantitative information. However, this methodology has limitation in extracting specific preference information related to customer within online reviews, making it difficult to improve recommendation performance. To address the limitation of previous studies, this study proposes a novel recommendation methodology that applies deep learning technique and uses various linguistic factors within online reviews to elaborately learn customer preferences. First, the interaction was learned nonlinearly using deep learning technique for the purpose to extract complex interactions between customer and product. And to effectively utilize online review, cognitive contents, affective contents, and linguistic style matching that have an important influence on customer's purchasing decisions among linguistic factors were used. To verify the proposed methodology, an experiment was conducted using online review data in Amazon.com, and the experimental results confirmed the superiority of the proposed model. This study contributed to the theoretical and methodological aspects of recommender system study by proposing a methodology that effectively utilizes characteristics of customer's preferences in online reviews.

A Comparative Analysis of Complex Disaster Research Trends Using Network Analysis (네트워크 분석을 활용한 국내·외 복합재난 연구 동향 분석)

  • Woosik Kim;Yeonwoo Choi;Youjeong Hong;Dong Keun Yoon
    • Journal of the Society of Disaster Information
    • /
    • v.18 no.4
    • /
    • pp.908-921
    • /
    • 2022
  • Purpose: As the connection between physical and non-physical structures in cities is expanding and becoming more complex, the risk of complex disaster which causes damage in a complex way is increasing. Preparing for these complex disasters, it is important to preemptively identify and manage disasters that can develop into complex disasters. Therefore, this study analyzes the disaster types studied as complex disasters by analyzing the trends of domestic and international studies related to complex disasters, and presents the direction of complex disaster management in the future. Method: We first established co-occurrence networks between disaster types based on 993 articles related to complex disasters published in disaster-related journals for the last 20 years (2002-2021). Then, through network analysis, domestic and international complex disaster research trends were compared and analyzed. Result: Research on complex disasters related to storm and flood damage, infrastructure failure and fire was high in domestic studies, and it was analyzed that research on complex disasters related to earthquakes and landslides has recently increased. However, in international studies, the proportion of studies on infrastructure failure along with storm and flood damage and earthquake was high, and various types of disasters such as tsunami and drought appeared. Conclusion: The results of this study are expected to increase the understanding of the trends in complex disaster research and provide suggestions of domestic complex disaster research in the future.

A Study on Establishing a Market Entry Strategy for the Satellite Industry Using Future Signal Detection Techniques (미래신호 탐지 기법을 활용한 위성산업 시장의 진입 전략 수립 연구)

  • Sehyoung Kim;Jaehyeong Park;Hansol Lee;Juyoung Kang
    • Journal of Intelligence and Information Systems
    • /
    • v.29 no.3
    • /
    • pp.249-265
    • /
    • 2023
  • Recently, the satellite industry has been paying attention to the private-led 'New Space' paradigm, which is a departure from the traditional government-led industry. The space industry, which is considered to be the next food industry, is still receiving relatively little attention in Korea compared to the global market. Therefore, the purpose of this study is to explore future signals that can help determine the market entry strategies of private companies in the domestic satellite industry. To this end, this study utilizes the theoretical background of future signal theory and the Keyword Portfolio Map method to analyze keyword potential in patent document data based on keyword growth rate and keyword occurrence frequency. In addition, news data was collected to categorize future signals into first symptom and early information, respectively. This is utilized as an interpretive indicator of how the keywords reveal their actual potential outside of patent documents. This study describes the process of data collection and analysis to explore future signals and traces the evolution of each keyword in the collected documents from a weak signal to a strong signal by specifically visualizing how it can be used through the visualization of keyword maps. The process of this research can contribute to the methodological contribution and expansion of the scope of existing research on future signals, and the results can contribute to the establishment of new industry planning and research directions in the satellite industry.