• 제목/요약/키워드: Text-mining Analysis

검색결과 1,221건 처리시간 0.03초

온라인 정보 보호: 소셜 미디어 내 정보 유출 반응 분석 (Online Privacy Protection: An Analysis of Social Media Reactions to Data Breaches)

  • 서승우;고영준;이홍주
    • 지식경영연구
    • /
    • 제25권1호
    • /
    • pp.1-19
    • /
    • 2024
  • 최근 개인 정보 유출 사건이 빈번히 발생하고 빈도가 갈수록 증가하는 추세이지만, 개인 정보 유출 사건에 대한 사회나 정보주체인 시민들의 반응은 크게 대두되고 있지 않다. 또한, 개인 정보 유출 사건들에 대한 정보 주체의 반응을 여러 해 기간동안의 데이터에 기반하여 비교하는 연구는 많이 수행되어 있지 않다. 따라서, 본 연구는 2014년 1월부터 2022년 10월까지 국내에서 발생한 주요 개인정보 유출 사건들에 대한 정보주체의 소셜미디어 반응 변화를 분석하였다. 각 사건들이 발생한 직후 일주일간의 기간 동안 네이버 블로그에 작성된 총 1,317건의 포스팅을 수집하였다. 이 포스팅들에 대해 LDA 토픽 모델링 기법을 적용하여 주제를 분석한 결과, 개인정보 유출, 해킹, 정보기술 등 5개의 주요 토픽이 도출되었다. 토픽 분포의 시간변화를 분석한 결과, 개인정보 유출 사건 직후에는 해당 사건에 대한 직접적인 언급 토픽의 비중이 가장 높았으나, 시간이 지나면서 개인정보 유출과 간접적으로 관련된 토픽의 언급 비중이 증가하는 것을 확인하였다. 이는 개인정보 유출 사건 발생 후 정보주체의 관심이 시간이 지남에 따라 해당 사건에서 벗어나 관련 토픽으로 옮겨지고, 개인정보 보호에 대한 관심 또한 줄어든다는 것을 의미한다. 본 연구 결과는 향후 개인정보 유출 사건 이후 정보주체의 프라이버시 인식 변화에 대한 연구의 필요성을 시사한다.

데이터 분석을 통한 UX 방법론 연구 고객 세그먼트 분류를 통한 페르소나 도출을 중심으로 (UX Methodology Study by Data Analysis Focusing on deriving persona through customer segment classification)

  • 이슬이;박도형
    • 지능정보연구
    • /
    • 제27권1호
    • /
    • pp.151-176
    • /
    • 2021
  • 정보기술 산업이 발전됨에 따라 다양한 종류의 데이터가 생겨나고 있고 이를 가공하여 산업에 활용하는 것이 필수인 시대가 되었다. 온 오프라인 상에서 수집된 다양한 디지털 데이터를 분석하여 활용하는것은 산업 내의 고객에게 적합한 경험을 제공하기 위해서 꼭 필요한 과정이다. 새로운 비즈니스, 제품, 서비스를 창출하기 위해서는다방면에서 수집된 고객 데이터를 활용하여잠재고객의 니즈를 깊게 파악하고 행동패턴을 분석하여 숨겨진 욕망의 신호를 잡아내는것이 필수이다. 그러나 효과적인 서비스 개발을 위해서 병행해서 진행되어야 할 데이터 분석, UX 방법론을 활용한 연구는 각각 따로 진행되고 있고 산업 내의 활용 예시가 부족한 것이 사실이다. 본 연구에서는 데이터 분석 방법과 UX 방법론을 응용하여 하나의 프로세스를 제작하였다. 행복을 주제로 진행된 설문조사에서 추출된 고객 데이터를 활용하여 고객의 특성을 파악하기 위한 데이터 분석을 진행하였다. 요인, 회귀분석을 실시하여 행복 데이터 설문의 요인 간의 연관 관계를 확인하였다. 그 다음 연관 관계를 군집을 분류하고 가장 최적의 군집 수를 추출하여분류하였다. 이러한 결과를 바탕으로 교차분석을 진행하여 군집 별로 인구통계학적 특성을 확인하였다. 세그먼트를 분류하기 전 서비스 정의를 하기 위하여 뉴스 기사 및 SNS 문장들을 바탕으로 텍스트 마이닝을 통해 주요 키워드를 바탕으로 아이디어를 도출하였고 이중에 가장 타당한 서비스를 선택하였다. 이러한 결과를 바탕으로 세그먼트및 목표 고객을 선정한 후 세그먼트의 특성대로 대상자를 선정하여 인터뷰를진행하였다. 그 후 특성 및 프로파일정보를 활용하여 페르소나를 제작하여고객의 행동과 최종 목표를 서술하였다. 일반적인페르소나와 데이터를 활용한 페르소나를 비교하여 각각의 특성을 비교 분석하였다. 본 연구를 통해 도출된 프로세스는 다변화되는 서비스의 변화 상황에서 적절한 타겟 고객의 정의 및 정확한 분류 체계로 나뉘어진 고객군을파악 할 수 있는 방법을 제시 한 것에 의의가 있다.

토픽 모델링을 활용한 한국의 창업생태계 트렌드 변화 분석 (Analysis on Dynamics of Korea Startup Ecosystems Based on Topic Modeling)

  • 손희영;이명종;변영조
    • 지식경영연구
    • /
    • 제23권4호
    • /
    • pp.315-338
    • /
    • 2022
  • 1986년, 한국은 국가발전의 주축인 중소기업 창업지원을 위한 법 제도를 마련하였다. 이를 기반으로 지난 30여년간 창업정책의 수립 및 발전을 거듭하여 매년 100만 개가 넘는 신규 창업기업이 설립되는 역동적인 창업생태계를 구축하였다. 국가의 정책 방향과 사회, 경제, 문화 등의 외부환경 영향, 그리고 창업지원의 역사를 주요 이슈별로 분석하여 도출된 핵심문장 또는 키워드는 시대별 지원의 특징과 국가지원의 중심내용 등을 확인하는 데 매우 유용하다. 본 연구는 한국의 창업생태계 트렌드 변화를 분석하기 위해 1991년부터 2020년 12월까지 30년간의 언론기사에서 '창업', '벤처', '스타트업' 키워드가 포함된 118만여 건을 추출하고 네트워크 분석과 토픽 모델링을 활용하였다. 분석결과, 한국의 창업생태계 트렌드는 기업 및 산업육성, 확산 그리고 규제 완화, 활황 등, 정부 중심으로 스타트업 생태계의 변화와 발전이 이루어졌음을 파악할 수 있었으며, 다빈도 키워드 분석결과, 생태계 구성요인 간의 연계 활동을 통하여 기업가적인 생산성이 창출되었다. 생산성 창출의 주요 요인으로 한국은 대기업의 휴대폰 산업 발전과 이와 관련된 콘텐츠 스타트업의 성장, 인터넷과 쇼핑몰 중심의 플랫폼 기업의 발전, 그리고 청년창업과 글로벌 진출, 모바일과 인터넷 인프라 중심의 창업기업육성 노력 등으로 파악할 수 있었다. 본 연구는 30년간의 언론기사를 텍스트마이닝과 토픽 모델링을 활용하여 트렌드를 도출하였다. 이는 선행연구가 기존 정부와 정책의 변경 시기를 기준으로 트렌드 변화를 분석한 것과 달리, 언론기사의 키워드와 토픽 변화를 기준으로 창업생태계의 트렌드 변화를 분석하였다는 점에서 학술적 의의뿐만 아니라, 30년 간의 창업생태계 변화 및 주요이슈를 조명해 봄으로써 향후 창업지원의 방향성을 예측할 수 있는 실무적 시사점을 제공하였다.

한중 4차산업혁명 기술교류 및 효과에 대한 실증연구: 기업 소셜 네트워크 분석 중심으로 (The Empirical Study on the Effect of Technology Exchanges in the Fourth Industrial Revolution between Korea and China: Focused on the Firm Social Network Analysis)

  • 저우전신;손권상;황윤민;권오병
    • 한국전자거래학회지
    • /
    • 제25권3호
    • /
    • pp.41-61
    • /
    • 2020
  • 중국의 4차 산업혁명 첨단기술 개발 및 사업화 속도가 빠르게 진행되며 효과적인 한중 기업 간 기술교류가 한국의 중장기 산업발전에 더욱 중요해지고 있다. 하지만 아직까지 한중 기업 간 기술교류가 어떻게 진행되는지와 그 효과에 대한 실증 연구가 부족하다. 이에 본 연구는 4차 산업혁명 관련 한중 기술교류 현황 및 효과에 대해 2018년부터 2020년 3월까지 뉴스에 소개된 한중 기업 기술교류 및 협력 기사의 텍스트 마이닝 데이터 기반으로 소셜 네트워크 분석을 진행하고 네트워크 중심성의 성과영향 회귀분석을 진행했다. 분석 결과 국내 전자 대기업들이 대부분 중심성 지표에서 높은 중심성을 보이며 중국 기업 및 기관들과 네트워킹을 활발히 진행하고 있다. 국내 통신사들이 매개 중심성과 부분그래프에서 높은 중심성을 국내 인터넷 서비스 업체와 방송 컨텐츠 업체들이 높은 고유벡터 중심성을 나타냈다. 또한 한국기업보다 중국기업이 높은 매개 중심성을 제조기업보다 서비스기업이 높은 근접 중심성을 보였다. 이러한 네트워크 중심성은 회귀분석결과 기업성과에 긍정적인 영향을 미쳤다. 본 연구는 4차 산업혁명 분야에 집중하여 한중간 협력 현황을 분석한 최초 연구라는 의미가 있으며, 학술적으로 글로벌 기업 협력에 있어 소셜 네트워크 분석 기반 실증 연구 방향을 제시하고 실무적으로 기업이나 정부의 한중 기술 협력 방향 설정에 있어 네트워크 분석 기반 가이드라인을 제시하였다.

온라인 상품 판매 성과에 영향을 미치는 상품 소개글 효과 측정 기법 (Measuring the Economic Impact of Item Descriptions on Sales Performance)

  • 이동원;박성혁;문송천
    • 지능정보연구
    • /
    • 제18권4호
    • /
    • pp.1-17
    • /
    • 2012
  • 온라인 상에서 판매되는 상품은 매우 다양하지만, 소비자에게 판매 가격을 제시하거나 소개글을 통해서 상품에 대한 구체적인 설명을 제공한다는 점은 모든 상품에 있어서 가장 기본이 되는 공통적인 특징이다. 만약, 상품의 실제 품질이나 가격과는 독립적으로 상품 소개글이 판매에 미치는 영향력을 파악할 수 있다면 어떠한 소개글이 상품의 판매를 촉진하는 측면에서 더 좋은 글인지 분별할 수 있게 된다. 이런 관점에서 본 연구는 상품 소개글과 판매 성과의 관계를 파악하기 위한 목적으로 수행되었으며, 구체적으로는 온라인 시장에서 한글로 작성된 상품 소개글에 쓰인 각각의 표현 별로 소비자가 구매를 결정하는 데에 어떤 영향을 미치는지를 분석하고자 하였다. 한글 형태소 분석기를 사용하여 국내 앱 시장에서 수집된 앱 소개글 및 판매이력 데이터로부터 상품을 설명하는 주요 속성과 그 속성에 대한 평가를 추출하였으며, 추출된 키워드를 입력 변수로 구성한 계량경제학 모형을 구축하였고, 구체적으로 특정 표현들이 판매 성과에 미치는 영향을 구축된 모형을 사용하여 계량적으로 측정하였다. 앱의 카테고리 별로 표현의 종류가 상이하게 나타남이 관찰됨에 따라, 분석은 각 카테고리 별로 수행되었다. 유료 앱과 무료 앱에 대해서 데이터 분석을 수행한 결과, 판매 성과에 영향을 미치는 '속성과 평가' 키워드를 그 영향력의 크기 별로 파악할 수 있었으며, 특히 무료 앱의 경우는 무료로 이용할 수 있음에도 불구하고 품질이 좋다는 것을 강조했을 때 판매량을 더 높일 수 있다는 것이 확인되었다. 본 연구는 모바일 앱에 대해 수행되었으나, 온라인에서 거래되는 다양한 상품에 대해서도 소개글이 판매 성과에 미치는 영향을 분석할 수 있는 모형으로 활용될 수 있다. 마지막 장에서는 기업의 마케팅 매니저가 본 연구에서 제시하는 연구 방법론과 분석 결과를 활용할 수 있는 방안을 제시하였다.

블로그 데이터 감성분석을 통한 북한산둘레길 구간별 선호도 평가 (Evaluation of Preference by Bukhansan Dulegil Course Using Sentiment Analysis of Blog Data)

  • 이성희;손용훈
    • 한국조경학회지
    • /
    • 제49권3호
    • /
    • pp.1-10
    • /
    • 2021
  • 본 연구는 탐방객이 자유롭게 서술한 블로그 텍스트 데이터를 자연어 처리 기술 중 하나인 감성분석을 활용하여 북한산둘레길의 선호도를 평가하고, 선호 요인과 비선호 요인을 도출하는 것을 목적으로 하였다. 이에 2019년 1년 동안 작성된 블로그를 수집하고 21개 둘레길 구간별 텍스트에 나타난 긍정 및 부정 감성 단어 도출을 통해 감성점수를 산출하였다. 이후 내용분석을 통해 탐방객이 어떤 요소로 인해 구간을 선호하거나 선호하지 않는지 파악하였다. 북한산둘레길에 대해 작성된 블로그에서는 긍정적인 단어가 평균적으로 약 73% 출현하고 있었고, 각 구간별 게시물의 감성 극성 비율에서도 긍정적인 문서의 비율이 부정적인 문서의 비율보다 높았다. 이를 통해 탐방객은 북한산둘레길에 대하여 대체로 긍정적으로 인식하고 있는 것으로 나타났다. 그럼에도 감성점수를 도출한 결과, 21개 둘레길 구간에서는 선호하는 구간과 선호하지 않는 구간이 존재하고 있었다. 선호 구간과 비선호 구간에 대해 탐방객은 난이도가 낮고 부담 없이 걸을 수 있는 구간을 선호하고 있었고, 경관에 대한 여러 요소(시각, 청각, 후각 등)가 조화롭고 계절감이 뚜렷해 다양한 경관이 연출되는 곳, 경관 시퀀스의 변화가 존재하는 구간을 선호하는 것으로 나타났다. 또한 탐방객은 전망대, 조망점 등의 뷰포인트 유무를 둘레길에서의 주요 요소로 인식하고 있었고, 접근성이 우수하고 안내판 등 정보 제공이 원활하게 이뤄지는 구간에 대해 선호도가 더 높은 것을 알 수 있다. 반면, 도로와 인접함에 따라 발생되는 주변 소음과 과도한 시가지 비율, 구간별 난이도 불균형 등으로 인한 둘레길 동선 불만족이 비선호 요인으로 크게 작용하고 있었으며, 경관 단절 및 구간에 대한 정보 부족 등이 선호도를 떨어트리는 원인으로 나타났다. 본 연구의 결과는 국립공원뿐만 아니라 근교 산림 녹지 관리에 있어서 둘레길 정비 및 개선방안 마련에 활용될 수 있으며, 연구에 활용된 감성분석은 자연지역에 대한 실제 이용자들의 반응을 지속적으로 모니터링 할 수 있다는 점에 의의가 있다. 다만 사전에 정의된 감성사전을 기반으로 평가하였기에 지속적인 사전 업데이트가 필요하다. 또한 소셜미디어 특성상 부정적인 견해보다는 긍정적인 내용을 공유하는 경향이 존재하기 때문에, 현장 설문조사 등의 분석 결과와 비교, 검토하는 작업이 필요하다.

토픽 모델링을 이용한 트위터 이슈 트래킹 시스템 (Twitter Issue Tracking System by Topic Modeling Techniques)

  • 배정환;한남기;송민
    • 지능정보연구
    • /
    • 제20권2호
    • /
    • pp.109-122
    • /
    • 2014
  • 현재 우리는 소셜 네트워크 서비스(Social Network Service, 이하 SNS) 상에서 수많은 데이터를 만들어 내고 있다. 특히, 모바일 기기와 SNS의 결합은 과거와는 비교할 수 없는 대량의 데이터를 생성하면서 사회적으로도 큰 영향을 미치고 있다. 이렇게 방대한 SNS 데이터 안에서 사람들이 많이 이야기하는 이슈를 찾아낼 수 있다면 이 정보는 사회 전반에 걸쳐 새로운 가치 창출을 위한 중요한 원천으로 활용될 수 있다. 본 연구는 이러한 SNS 빅데이터 분석에 대한 요구에 부응하기 위해, 트위터 데이터를 활용하여 트위터 상에서 어떤 이슈가 있었는지 추출하고 이를 웹 상에서 시각화 하는 트위터이슈 트래킹 시스템 TITS(Twitter Issue Tracking System)를 설계하고 구축 하였다. TITS는 1) 일별 순위에 따른 토픽 키워드 집합 제공 2) 토픽의 한달 간 일별 시계열 그래프 시각화 3) 토픽으로서의 중요도를 점수와 빈도수에 따라 Treemap으로 제공 4) 키워드 검색을 통한 키워드의 한달 간 일별 시계열 그래프 시각화의 기능을 갖는다. 본 연구는 SNS 상에서 실시간으로 발생하는 빅데이터를 Open Source인 Hadoop과 MongoDB를 활용하여 분석하였고, 이는 빅데이터의 실시간 처리가 점점 중요해지고 있는 현재 매우 주요한 방법론을 제시한다. 둘째, 문헌정보학 분야뿐만 아니라 다양한 연구 영역에서 사용하고 있는 토픽 모델링 기법을 실제 트위터 데이터에 적용하여 스토리텔링과 시계열 분석 측면에서 유용성을 확인할 수 있었다. 셋째, 연구 실험을 바탕으로 시각화와 웹 시스템 구축을 통해 실제 사용 가능한 시스템으로 구현하였다. 이를 통해 소셜미디어에서 생성되는 사회적 트렌드를 마이닝하여 데이터 분석을 통한 의미 있는 정보를 제공하는 실제적인 방법을 제시할 수 있었다는 점에서 주요한 의의를 갖는다. 본 연구는 JSON(JavaScript Object Notation) 파일 포맷의 1억 5천만개 가량의 2013년 3월 한국어 트위터 데이터를 실험 대상으로 한다.

산업군 내 동질성을 고려한 온라인 뉴스 기반 주가예측 (Online news-based stock price forecasting considering homogeneity in the industrial sector)

  • 성노윤;남기환
    • 지능정보연구
    • /
    • 제24권2호
    • /
    • pp.1-19
    • /
    • 2018
  • 주가 예측은 학문적으로나 실용적으로나 중요한 문제이기에, 주가 예측에 관련된 연구가 활발히 진행되었다. 빅 데이터 시대에 도입하면서, 빅 데이터를 결합한 주가 예측 연구도 활발히 진행되고 있다. 다수의 데이터를 기반으로 기계 학습을 이용한 연구가 주를 이룬다. 특히 언론의 효과를 접목한 연구 방법들이 주목을 받고 있는데, 그중 온라인 뉴스를 분석하여 주가 예측에 활용하는 연구가 주를 이루고 있다. 기존 연구들은 온라인 뉴스가 개별 회사에 대한 미치는 영향을 주로 살펴보았다. 또한, 관련성이 높은 기업끼리 서로 영향을 주는 것을 고려하는 방법도 최근에 연구되고 있다. 이는 동질성을 가지는 산업군에 대한 효과를 살펴본 것인데, 기존 연구에서 동질성을 가지는 산업군은 국제 산업 분류 표준에 따른다. 즉, 기존 연구들은 국제 산업 분류 표준으로 나뉜 산업군이 동질성을 가진다는 가정하에서 분석을 시행하였다. 하지만 기존 연구들은 영향력을 가지는 회사를 고려하지 못한 채 예측하였거나 산업군 내에서 이질성이 존재하는 점을 반영하지 못했다는 한계점을 가진다. 본 연구는 산업군 내에 이질성이 존재함을 밝히고, 이질성을 반영하지 못한 기존 연구의 한계점을 K-평균 군집 분석을 적용하여, 주가에 영향을 미치는 산업군의 동질적인 효과를 반영할 수 있는 방법론을 제안하였다. 방법론이 적합하다는 것을 증명하기 위해 3년간의 온라인 뉴스와 주가를 통해 실험한 결과, 다수의 경우에서 본 논문에서 제시한 방법이 좋은 결과를 나타냄을 확인할 수 있었으며, 국제 산업 분류 표준 산업군 내에서 이질성이 클수록 본 논문에서 제시한 방법이 좋은 효과를 보인다는 것을 확인할 수 있었다. 본 연구는 국제 산업 분류 표준으로 나누어진 기업들이 높은 동질성을 가지지 않는 다는것을 밝히고 이를 반영한 예측 모형의 효율성을 입증하였다는 점에서 의의를 가진다.

취업준비생 토픽 분석을 통한 취업난 원인의 재탐색 (Revisiting the cause of unemployment problem in Korea's labor market: The job seeker's interests-based topic analysis)

  • 김정수;이석준
    • 경영과정보연구
    • /
    • 제35권1호
    • /
    • pp.85-116
    • /
    • 2016
  • 본 연구는 개인-환경 부합 관점에서 취업시장변화에 따른 취업준비생의 관심사를 토대로 의사결정과정에 영향을 미치는 취업난의 원인을 탐색적으로 고찰하였다. 이를 위해, 최근 3개년(2013~2015) 간 취업 관련 커뮤니티 내 이용자 게시글(소셜미디어)을 웹 크롤링을 통해 수집하고, 텍스트 마이닝 기법 중 토픽 분석을 통해 취업준비생의 주요 관심사 유형 및 심리적 반응 변화추이를 분석하였다. 분석결과, 취업준비생의 주요 관심사가 '희망직업(세계)에 대한 인식, 취업사전준비활동, 노동시장에 대한 인식, 취업 스트레스'의 네 가지 유형으로 나타나는 것을 발견하였다. 구체적으로 이들은 직업가치나 미래 진로에 대한 탐색보다 희망직업과 관련하여 금전적 보상이나 직장근무형태(근무 및 생활환경)에 관해 관심을 두고 있어 불확실한 환경에 직면하면서 특정 언어적 사용(예: 비속어, 은어)을 토대로 불안정한 심리적 상태를 표현하는 것으로 나타났다. 또한 현재 취업준비생들은 취업 성공을 위한 전략적 선택차원에서 주로 스펙준비에 치중하고 있어 취업불안에 따른 스트레스를 받는 것으로 나타났다. 이러한 결과를 토대로 현재 취업난은 총체적으로 개인과 사회 조직의 가치추구 부재에 기인한다고 볼 수 있다. 결국 개인은 자신의 직업 가치관을 확립하지 못한 상황에서 일부 기업들은 인적자원의 중요성에 대해 자각하지 못하며, 사회적으로는 직업위세란 장애요인이 복합적으로 작용하여 나타난 문제라고 볼 수 있다. 따라서 취업난이란 특정 상황과 현상의 원인을 다각적으로 이해하고 다수의 취업준비생 관심사를 도출하기 위한 토픽분석과 이들의 다양한 반응의 의미를 언어 심리적 이론을 토대로 해석하는 접근방법의 필요성을 제기한다.

  • PDF

텍스트마이닝을 활용한 공개데이터 기반 기업 및 산업 토픽추이분석 모델 제안 (Development of Topic Trend Analysis Model for Industrial Intelligence using Public Data)

  • 박선영;이진무;김유일;서진이
    • 기술혁신연구
    • /
    • 제26권4호
    • /
    • pp.199-232
    • /
    • 2018
  • 빅데이터 분석을 통한 기업 경영환경에 대한 이해와 통찰을 구하고자 하는 요구가 산업 및 기업 경영 전반에 증가하고 있다. 이러한 사회적 요구에 따라 산업의 이해와 기업 경영의 이해를 위하여 기업의 경영실적 및 향후 계획을 포괄적으로 담고 있는 기업공시정보를 활용한 연구가 주목을 받고 있다. 이러한 기업공시정보는 대표적인 비정형 데이터로써 텍스트마이닝 방법론을 적용하여 그 범위와 수준에 대한 다양한 접근을 통하여 산업 수준 및 기업 수준에서 다양한 활용이 가능하다. 그러나 아직은 이러한 기업공시자료를 활용한 산업 및 기업 레벨에서 적용가능한 수준의 분석모델이 부족한 것으로 파악된다. 따라서 본 연구에서는 실제 활용 가능한 공개데이터를 활용한 산업 및 기업 수준의 분석모델을 제안하고자 한다. 미국상장기업의 공시자료인 미국 SEC EDGAR 자료를 기반으로 텍스트마이닝 알고리즘을 적용하여 산업 및 기업 수준의 경영주제(토픽)에 대한 추이분석이 가능한 모델을 제안하고자한다. SEC EDGAR의 10-K 문서를 대상으로 LDA 토픽 모델링을 통하여 산업 수준에서 전체 산업의 주제분야 분류를 파악하였고, 산업간 비교 측면에서 소프트웨어 산업과 하드웨어 산업 분야의 사례를 통해 최근 20년간의 토픽추이를 비교분석 하였다. 또한 최근 20년간의 기업의 경영주제 변화를 소프트웨어 산업에 속한 2개 기업을 중심으로 살펴보았다. 이를 통해 산업 및 기업 수준에서의 경영주제의 추이 변화를 파악하여 쇠퇴 및 성장 추세에 있는 경영주제를 확인 할 수 있었다. 한편 word2vec 워드 임베딩 모델과 주성분분석을 통한 차원 축약을 통해 소프트웨어 산업분야의 기업 및 특정 제품(혹은 서비스)에 대한 매핑을 통해 유사한 경영주제(토픽)를 가지는 기업 및 제품(서비스)을 사례를 통해 파악하였으며, 이를 시간적 흐름에 따른 변화 양상도 관찰할 수 있었다. 본 연구의 목적이 공개데이터를 활용한 산업 및 기업 수준의 분석모델을 개발하기 위한 방법론을 제안한 측면에서, 해외 데이터를 사용하여 산업의 경영주제 변화 추이, 기업의 경영주제 변화 추이를 거시적으로 조망할 수 있는 실무적인 방법론의 제안에서 의의가 있을 수 있다. 한편 기업의 기술경영전략 측면에서 기업의 경영토픽의 잦은 변화, 경영주제의 변화의 속도 등 다양한 변화 양상의 차이에 따른 기업의 매출 등의 경영성과와의 연관성 분석, 실제 기업의 제품포트폴리오의 구성에 따른 기업 간의 경쟁상황 등을 파악하는 미시적 모델 제안을 위한 추가 연구가 요구된다.