To investigate the national science and technology policy direction in the field of construction machinery, an analysis was conducted on projects selected as national research and development (R&D) initiatives by the government. Assuming that the project titles contain key keywords, text mining was employed to substantiate this assumption. Project information data spanning nine years from 2014 to 2022 was collected through the National Science & Technology Information Service (NTIS). To observe changes over time, the years were divided into three-year sections. To analyze research trends efficiently, keywords were categorized into groups: 'equipment,' 'smart,' and 'eco-friendly.' Based on the collected data, keyword frequency analysis, N-gram analysis, and topic modeling were performed. The research findings indicate that domestic government R&D in the construction machinery field primarily focuses on smart-related research and development. Specifically, investments in monitoring systems and autonomous operation technologies are increasing. This study holds significance in analyzing objective research trends through the utilization of big data analysis techniques and is expected to contribute to future research and development planning, strategic formulation, and project management.
Report documents of industrial and occupational accidents have continuously been accumulated in private and public institutes. Amongst others, information on narrative-texts of accidents such as accident processes and risk factors contained in disaster report documents is gaining the useful value for accident analysis. Despite this increasingly potential value of analysis of text information, scientific and algorithmic text analytics for safety management has not been carried out yet. Thus, this study aims to develop data processing and visualization techniques that provide a systematic and structural view of text information contained in a disaster report document so that safety managers can effectively analyze accident risk factors. To this end, the risk factor map using text mining and self-organizing map is developed. Text mining is firstly used to extract risk keywords from disaster report documents and then, the Self-Organizing Map (SOM) algorithm is conducted to visualize the risk factor map based on the similarity of disaster report documents. As a result, it is expected that fruitful text information buried in a myriad of disaster report documents is analyzed, providing risk factors to safety managers.
Freediving, an underwater leisure sport that involves diving without the use of a breathing apparatus, has gained popularity among younger demographics through the viral spread of images and videos on social media platforms. This study employs prominent Big Data analysis techniques, including text mining, Latent Dirichlet Allocation (LDA) topic analysis, and opinion mining to explore the keywords associated with freediving suits over the past five years. The research aims to analyze the rapidly evolving market trends of freediving suits and the increasingly complex and diverse consumer perceptions to provide foundational data for activating the freediving suit market and developing strategies for sustained growth. The study identified the keyword 'size' related to freediving suits and conducted opinion mining on 'freediving suit sizes'. Although the results showed a higher positive than negative sentiment, negative keywords were also extracted, indicating the need to understand and mitigate the negative factors associated with 'size'. The findings offer vital guidelines for the advancement of the freediving suit market and enhancing consumer satisfaction. This study is important as it contributes foundational data for continuous growth strategies of the freediving suit market.
본 연구는 질병과 관련한 온라인 포럼에서 추출한 언어 데이터를 통해 제 2형 당뇨병 환자의 질병에 대한 담론을 양적으로 분석하였다. 또한 환자 언어행위의 양적분석을 통해 환자들의 주요 관심사와 심리적 특징의 일반화가 가능한지에 대해 실증적으로 검증하였다. 분석방법으로는 기존의 인터뷰에 기반한 정성적 연구방법론과 달리 환자들의 담론 표본 전체를 파싱 (parsing)과 POS 태깅을 통해 언어학적으로 형태소 분류를 하였다. 주요 어휘빈도 추출과 N-gram을 통한 최빈도 구문구조 분석을 병행하여, 질병과 관련한 이슈의 주요 범주와 심리상태에 관한 언어적인 특징을 살펴보았다. 연구 결과 환자들의 자발적 대화는 주로 다이어트, 운동, 증상, 약물치료, 심리상태의 5가지 범주로 나타나고 있음을 확인하였고, 최빈도 구문구조 분석을 통해 질병치료와 식생활습관 개선 전반에 대한 부정적인 견해가 두드러진 것을 확인하였다. 결과적으로 의료진의 정확한 정보 전달과 전문가의 조언, 정서적 지원 등이 당뇨환자에 대한 심리적 상태에 중요한 만큼 심리치료 서비스이 개선이 필요할 것으로 보인다. 이런한 결과는 기존의 의료제도 안에서의 환자의 관심사와 심리적 특징이 온라인 상에서도 적절하게 투영되고 있음을 시사한다.
본 연구는 텍스트 마이닝을 활용하여 리빙랩 연구의 동향을 파악하고 연구 방향 정립에 필요한 함의를 도출하고자 하였다. 리빙랩 관련 연구가 발표되기 시작한 2011년부터 2019년 11월까지의 논문 166편의 키워드와 초록을 대상으로 네트워크 분석 및 토픽 모델링 기법을 사용하여 분석하였다. 키워드 중 혁신, 지역, 사회, 기술, 스마트시티 등의 출현빈도가 높았고, 중심도 분석결과 현재까지 리빙랩 연구가 혁신, 사회, 기술, 개발, 사용자 등의 키워드를 중심으로 이루어짐을 파악하였다. 토픽 모델링 결과 지역혁신과 사용자지원, 정부 사회정책사업, 스마트시티 플랫폼구축, 기업기술혁신모델 및 시스템전환 참여 등 5개 토픽을 추출하였으며 토픽을 이어주는 키워드는 혁신, 기술, 사용자, 참여인것으로 분석하였다. 2017년 KNoLL 출범 후 토픽별 비중은 고른 분포로 연구 주제가 다양화됨을 확인하였다. 텍스트마이닝을 이용한 리빙랩 연구동향 분석과 방향 제시는 연구와 정책방향 수립에 유용한 자료를 제공할 수 있다.
본 논문은 융복합 논문지인 창의정보문화연구의 연구 동향을 분석하기 위한 목적으로 텍스트 마이닝 방법을 활용하였다. 기존의 연구동향 분석방법은 전통적인 내용분석 방법을 사용하여 연구자 개인의 성향이 반영되는 한계가 있었다. 따라서, 기존 연구 동향 분석의 한계를 보완하고자 본 논문에서는 토픽 모델링 기법을 사용하였고, 창의정보문화연구 논문지의 2015년에서 2019년까지 발간된 논문 전체의 영문초록을 분석하였다. 분석 결과, 가장 많이 등장한 단어는 "education"이었고, 8개의 연구 주제가 도출되었다. 도출된 주제는 교육대상, 교육평가, 학습자역량, 소프트웨어와 메이커 문화, 정보교육과 컴퓨터교육, 미래교육, 창의성, 교수학습방법으로 분석되었다. 본 논문의 텍스트 마이닝을 활용하여 융복합연구 논문지의 연구동향을 분석하였다는 점에서 의의가 있다고 할 수 있다.
본 연구는 최근 10년 동안(2009-2018) 국내 학술지에 발표된 감정노동(emotional labor) 관련 892편의 논문을 텍스트 마이닝(text-mining) 및 네트워크 분석(network analysis)을 활용하여 연구동향을 파악하는 것이 목적이다. 이를 위해 이들 논문의 주제어를 수집 및 코딩하여 최종적으로 871개의 노드(node)와 2625개의 링크(link)로 변환시켜 네트워크 텍스트로 분석하였다. 첫째, 네트워크 텍스트 분석 결과로 동시출현빈도에 따른 상위 4개 주요 주제어는 번아웃, 이직의도, 직무스트레스, 직무만족 순으로 나타났으며, 연결중심성에 따른 상위 4개 주제어들의 빈도와 연결중심성 모두 비교적 높은 것으로 확인되었다. 둘째, 연결중심성 상위 4개의 주제어를 바탕으로 자아(ego)연결망 분석을 실시하여 각 네트워크의 연결중심도에 대한 주제어를 제시하였다.
Journal of the Korean Data and Information Science Society
/
제26권1호
/
pp.151-159
/
2015
이 논문에서는 텍스트마이닝 (text mining) 기법을 이용하여 한국데이터정보과학회지에 게재된 논문의 영어초록을 분석하였다. 먼저 다양한 방법을 통해 단어-문서 행렬 (term-document matrix)을 생성하고 이를 사회연결망 분석 (social network analysis)을 통해 시각화하였다. 또한 토픽을 추출하기 위한 방법으로 LDA (latent Dirichlet allocation)와 CTM (correlated topic model)을 사용하였다. 토픽의 수, 단어-문서 행렬의 생성방법에 따라 엔트로피 (entropy)를 통해 토픽 추출 모형들의 성능을 비교하였다.
In order to effectively prepare for damage caused by weather events, it is important to proactively identify the possible impacts of weather phenomena on the domestic society and economy. Text mining and Network analysis are used in this paper to build a database of damage types and levels caused by heat wave. We collect news articles about heat wave from the SBS news website and determine the primary and secondary effects of that through network analysis. In addition to that, based on the frequency with which each impact keyword is mentioned, we estimate how much influence each factor has. As a result, the types of impacts caused by heat wave are efficiently derived. Among these types of impacts, we find that people in South Korea are mainly interested in algae and heat-related illness. Since this technique of analysis can be applied not only to news articles but also to social media contents, such as Twitter and Facebook, it is expected to be used as a useful tool for building weather impact databases.
Recently, physical examinations have become an important strategy to reduce costs for individuals and society. Pre-physical counseling is important for an effective physical examination. However, incomplete counseling is being conducted because the demand for physical examinations is not predicted. Therefore, in this study, the demand for physical examination was predicted using text mining and stepwise regression. As a result of the analysis, the most recent text data showed a high explanatory power of the demand for physical examination. Also, large amounts of data have high explanatory power. In addition, it was found that the high frequency of the text "health food" reduces the number of health examination customers. And the higher the frequency of the text of the word "food", the lower the number of physical examination customers. However, when the word "wild ginseng" was exposed a lot on Twitter, the number of physical examination customers visiting hospitals increased. In other words, customers consume efficiently by comparing the health examination price with the price of consumer goods. The proposed research framework can help predict demand in other industries.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.