• 제목/요약/키워드: Text-mining Analysis

검색결과 1,221건 처리시간 0.029초

텍스트 마이닝을 통한 건설기계분야 국내 정부 R&D 연구동향 분석 (Text-Mining Analysis of Korea Government R&D Trends in Construction Machinery Domains)

  • 윤봄;배준수
    • 산업경영시스템학회지
    • /
    • 제46권spc호
    • /
    • pp.1-8
    • /
    • 2023
  • To investigate the national science and technology policy direction in the field of construction machinery, an analysis was conducted on projects selected as national research and development (R&D) initiatives by the government. Assuming that the project titles contain key keywords, text mining was employed to substantiate this assumption. Project information data spanning nine years from 2014 to 2022 was collected through the National Science & Technology Information Service (NTIS). To observe changes over time, the years were divided into three-year sections. To analyze research trends efficiently, keywords were categorized into groups: 'equipment,' 'smart,' and 'eco-friendly.' Based on the collected data, keyword frequency analysis, N-gram analysis, and topic modeling were performed. The research findings indicate that domestic government R&D in the construction machinery field primarily focuses on smart-related research and development. Specifically, investments in monitoring systems and autonomous operation technologies are increasing. This study holds significance in analyzing objective research trends through the utilization of big data analysis techniques and is expected to contribute to future research and development planning, strategic formulation, and project management.

재해분석을 위한 텍스트마이닝과 SOM 기반 위험요인지도 개발 (On the Development of Risk Factor Map for Accident Analysis using Textmining and Self-Organizing Map(SOM) Algorithms)

  • 강성식;서용윤
    • 한국안전학회지
    • /
    • 제33권6호
    • /
    • pp.77-84
    • /
    • 2018
  • Report documents of industrial and occupational accidents have continuously been accumulated in private and public institutes. Amongst others, information on narrative-texts of accidents such as accident processes and risk factors contained in disaster report documents is gaining the useful value for accident analysis. Despite this increasingly potential value of analysis of text information, scientific and algorithmic text analytics for safety management has not been carried out yet. Thus, this study aims to develop data processing and visualization techniques that provide a systematic and structural view of text information contained in a disaster report document so that safety managers can effectively analyze accident risk factors. To this end, the risk factor map using text mining and self-organizing map is developed. Text mining is firstly used to extract risk keywords from disaster report documents and then, the Self-Organizing Map (SOM) algorithm is conducted to visualize the risk factor map based on the similarity of disaster report documents. As a result, it is expected that fruitful text information buried in a myriad of disaster report documents is analyzed, providing risk factors to safety managers.

빅데이터 분석을 활용한 프리다이빙 슈트에 대한 소비자 인식 연구 (A Study of Consumer Perception on Freediving Suits Utilizing Big Data Analysis)

  • 김지은;이은영
    • 한국의상디자인학회지
    • /
    • 제26권2호
    • /
    • pp.87-99
    • /
    • 2024
  • Freediving, an underwater leisure sport that involves diving without the use of a breathing apparatus, has gained popularity among younger demographics through the viral spread of images and videos on social media platforms. This study employs prominent Big Data analysis techniques, including text mining, Latent Dirichlet Allocation (LDA) topic analysis, and opinion mining to explore the keywords associated with freediving suits over the past five years. The research aims to analyze the rapidly evolving market trends of freediving suits and the increasingly complex and diverse consumer perceptions to provide foundational data for activating the freediving suit market and developing strategies for sustained growth. The study identified the keyword 'size' related to freediving suits and conducted opinion mining on 'freediving suit sizes'. Although the results showed a higher positive than negative sentiment, negative keywords were also extracted, indicating the need to understand and mitigate the negative factors associated with 'size'. The findings offer vital guidelines for the advancement of the freediving suit market and enhancing consumer satisfaction. This study is important as it contributes foundational data for continuous growth strategies of the freediving suit market.

텍스트마이닝 기법을 이용한 제 2형 당뇨환자 온라인 담론의 어휘 및 구문구조 분석 (Lexical and Phrasal Analysis of Online Discourse of Type 2 Diabetes Patients based on Text-Mining)

  • 황문현;박정식
    • 디지털융복합연구
    • /
    • 제12권6호
    • /
    • pp.655-667
    • /
    • 2014
  • 본 연구는 질병과 관련한 온라인 포럼에서 추출한 언어 데이터를 통해 제 2형 당뇨병 환자의 질병에 대한 담론을 양적으로 분석하였다. 또한 환자 언어행위의 양적분석을 통해 환자들의 주요 관심사와 심리적 특징의 일반화가 가능한지에 대해 실증적으로 검증하였다. 분석방법으로는 기존의 인터뷰에 기반한 정성적 연구방법론과 달리 환자들의 담론 표본 전체를 파싱 (parsing)과 POS 태깅을 통해 언어학적으로 형태소 분류를 하였다. 주요 어휘빈도 추출과 N-gram을 통한 최빈도 구문구조 분석을 병행하여, 질병과 관련한 이슈의 주요 범주와 심리상태에 관한 언어적인 특징을 살펴보았다. 연구 결과 환자들의 자발적 대화는 주로 다이어트, 운동, 증상, 약물치료, 심리상태의 5가지 범주로 나타나고 있음을 확인하였고, 최빈도 구문구조 분석을 통해 질병치료와 식생활습관 개선 전반에 대한 부정적인 견해가 두드러진 것을 확인하였다. 결과적으로 의료진의 정확한 정보 전달과 전문가의 조언, 정서적 지원 등이 당뇨환자에 대한 심리적 상태에 중요한 만큼 심리치료 서비스이 개선이 필요할 것으로 보인다. 이런한 결과는 기존의 의료제도 안에서의 환자의 관심사와 심리적 특징이 온라인 상에서도 적절하게 투영되고 있음을 시사한다.

텍스트 마이닝을 이용한 리빙랩 연구동향 분석 (Research Trend Analysis on Living Lab Using Text Mining)

  • 김성묵;김영준
    • 디지털융복합연구
    • /
    • 제18권8호
    • /
    • pp.37-48
    • /
    • 2020
  • 본 연구는 텍스트 마이닝을 활용하여 리빙랩 연구의 동향을 파악하고 연구 방향 정립에 필요한 함의를 도출하고자 하였다. 리빙랩 관련 연구가 발표되기 시작한 2011년부터 2019년 11월까지의 논문 166편의 키워드와 초록을 대상으로 네트워크 분석 및 토픽 모델링 기법을 사용하여 분석하였다. 키워드 중 혁신, 지역, 사회, 기술, 스마트시티 등의 출현빈도가 높았고, 중심도 분석결과 현재까지 리빙랩 연구가 혁신, 사회, 기술, 개발, 사용자 등의 키워드를 중심으로 이루어짐을 파악하였다. 토픽 모델링 결과 지역혁신과 사용자지원, 정부 사회정책사업, 스마트시티 플랫폼구축, 기업기술혁신모델 및 시스템전환 참여 등 5개 토픽을 추출하였으며 토픽을 이어주는 키워드는 혁신, 기술, 사용자, 참여인것으로 분석하였다. 2017년 KNoLL 출범 후 토픽별 비중은 고른 분포로 연구 주제가 다양화됨을 확인하였다. 텍스트마이닝을 이용한 리빙랩 연구동향 분석과 방향 제시는 연구와 정책방향 수립에 유용한 자료를 제공할 수 있다.

텍스트 마이닝을 활용한 연구 동향 분석 (Analysis of Research Trends Using Text Mining)

  • 심재권
    • 창의정보문화연구
    • /
    • 제6권1호
    • /
    • pp.23-30
    • /
    • 2020
  • 본 논문은 융복합 논문지인 창의정보문화연구의 연구 동향을 분석하기 위한 목적으로 텍스트 마이닝 방법을 활용하였다. 기존의 연구동향 분석방법은 전통적인 내용분석 방법을 사용하여 연구자 개인의 성향이 반영되는 한계가 있었다. 따라서, 기존 연구 동향 분석의 한계를 보완하고자 본 논문에서는 토픽 모델링 기법을 사용하였고, 창의정보문화연구 논문지의 2015년에서 2019년까지 발간된 논문 전체의 영문초록을 분석하였다. 분석 결과, 가장 많이 등장한 단어는 "education"이었고, 8개의 연구 주제가 도출되었다. 도출된 주제는 교육대상, 교육평가, 학습자역량, 소프트웨어와 메이커 문화, 정보교육과 컴퓨터교육, 미래교육, 창의성, 교수학습방법으로 분석되었다. 본 논문의 텍스트 마이닝을 활용하여 융복합연구 논문지의 연구동향을 분석하였다는 점에서 의의가 있다고 할 수 있다.

주제어 네트워크 분석(network analysis)을 통한 국내 감정노동의 연구동향 탐색 (Exploration of Emotional Labor Research Trends in Korea through Keyword Network Analysis)

  • 이남연;김준환;문형진
    • 융합정보논문지
    • /
    • 제9권3호
    • /
    • pp.68-74
    • /
    • 2019
  • 본 연구는 최근 10년 동안(2009-2018) 국내 학술지에 발표된 감정노동(emotional labor) 관련 892편의 논문을 텍스트 마이닝(text-mining) 및 네트워크 분석(network analysis)을 활용하여 연구동향을 파악하는 것이 목적이다. 이를 위해 이들 논문의 주제어를 수집 및 코딩하여 최종적으로 871개의 노드(node)와 2625개의 링크(link)로 변환시켜 네트워크 텍스트로 분석하였다. 첫째, 네트워크 텍스트 분석 결과로 동시출현빈도에 따른 상위 4개 주요 주제어는 번아웃, 이직의도, 직무스트레스, 직무만족 순으로 나타났으며, 연결중심성에 따른 상위 4개 주제어들의 빈도와 연결중심성 모두 비교적 높은 것으로 확인되었다. 둘째, 연결중심성 상위 4개의 주제어를 바탕으로 자아(ego)연결망 분석을 실시하여 각 네트워크의 연결중심도에 대한 주제어를 제시하였다.

토픽 모형 및 사회연결망 분석을 이용한 한국데이터정보과학회지 영문초록 분석 (Analysis of English abstracts in Journal of the Korean Data & Information Science Society using topic models and social network analysis)

  • 김규하;박철용
    • Journal of the Korean Data and Information Science Society
    • /
    • 제26권1호
    • /
    • pp.151-159
    • /
    • 2015
  • 이 논문에서는 텍스트마이닝 (text mining) 기법을 이용하여 한국데이터정보과학회지에 게재된 논문의 영어초록을 분석하였다. 먼저 다양한 방법을 통해 단어-문서 행렬 (term-document matrix)을 생성하고 이를 사회연결망 분석 (social network analysis)을 통해 시각화하였다. 또한 토픽을 추출하기 위한 방법으로 LDA (latent Dirichlet allocation)와 CTM (correlated topic model)을 사용하였다. 토픽의 수, 단어-문서 행렬의 생성방법에 따라 엔트로피 (entropy)를 통해 토픽 추출 모형들의 성능을 비교하였다.

뉴스 기사 텍스트 마이닝과 네트워크 분석을 통한 폭염의 사회·경제적 영향 유형 도출: 2012~2016년 사례 (Text Mining and Network Analysis of News Articles for Deriving Socio-Economic Damage Types of Heat Wave Events in Korea: 2012~2016 Cases)

  • 정재인;이경준;김승범
    • 대기
    • /
    • 제30권3호
    • /
    • pp.237-248
    • /
    • 2020
  • In order to effectively prepare for damage caused by weather events, it is important to proactively identify the possible impacts of weather phenomena on the domestic society and economy. Text mining and Network analysis are used in this paper to build a database of damage types and levels caused by heat wave. We collect news articles about heat wave from the SBS news website and determine the primary and secondary effects of that through network analysis. In addition to that, based on the frequency with which each impact keyword is mentioned, we estimate how much influence each factor has. As a result, the types of impacts caused by heat wave are efficiently derived. Among these types of impacts, we find that people in South Korea are mainly interested in algae and heat-related illness. Since this technique of analysis can be applied not only to news articles but also to social media contents, such as Twitter and Facebook, it is expected to be used as a useful tool for building weather impact databases.

텍스트 마이닝을 이용한 건강검진 수요 예측 (Prediction of Physical Examination Demand Using Text Mining)

  • 박경보;김미량
    • 한국IT서비스학회지
    • /
    • 제21권5호
    • /
    • pp.95-106
    • /
    • 2022
  • Recently, physical examinations have become an important strategy to reduce costs for individuals and society. Pre-physical counseling is important for an effective physical examination. However, incomplete counseling is being conducted because the demand for physical examinations is not predicted. Therefore, in this study, the demand for physical examination was predicted using text mining and stepwise regression. As a result of the analysis, the most recent text data showed a high explanatory power of the demand for physical examination. Also, large amounts of data have high explanatory power. In addition, it was found that the high frequency of the text "health food" reduces the number of health examination customers. And the higher the frequency of the text of the word "food", the lower the number of physical examination customers. However, when the word "wild ginseng" was exposed a lot on Twitter, the number of physical examination customers visiting hospitals increased. In other words, customers consume efficiently by comparing the health examination price with the price of consumer goods. The proposed research framework can help predict demand in other industries.