• Title/Summary/Keyword: Text-based Chatbot

Search Result 26, Processing Time 0.027 seconds

Effects of Different Types of Chatbots on EFL Learners' Speaking Competence and Learner Perception (서로 다른 챗봇 유형이 한국 EFL 학습자의 말하기능력 및 학습자인식에 미치는 영향)

  • Kim, Na-Young
    • Cross-Cultural Studies
    • /
    • v.48
    • /
    • pp.223-252
    • /
    • 2017
  • This study explores effects of two types of chatbots - voice-based and text-based - on Korean EFL learners' speaking competence and learner perception. Participants were 80 freshmen students taking an English-speaking class at a university in Korea. They were divided into two experimental groups at random. During the sixteen-week experimental period, participants engaged in 10 chat sessions with the two different types of chatbots. To take a close examination of effects on the improvement of speaking competence, they took the TOEIC speaking test as pre- and post-tests. Structured questionnaire-based surveys were conducted before and after treatment to determine if there are changes in perception. Findings reveal two chatbots effectively contribute to improvement of speaking competence among EFL learners. Particularly, the voice-based chatbot was as effective as the text-based chatbot. An analysis of survey results indicates perception of chatbot-assisted language learning changed positively over time. In particular, most participants preferred voice-based chatbot over text-based chatbot. This study provides insight on the use of chatbots in EFL learning, suggesting that EFL teachers should integrate chatbot technology in their classrooms.

Primary Study for dialogue based on Ordering Chatbot

  • Kim, Ji-Ho;Park, JongWon;Moon, Ji-Bum;Lee, Yulim;Yoon, Andy Kyung-yong
    • Journal of Multimedia Information System
    • /
    • v.5 no.3
    • /
    • pp.209-214
    • /
    • 2018
  • Today is the era of artificial intelligence. With the development of artificial intelligence, machines have begun to impersonate various human characteristics today. Chatbot is one instance of this interactive artificial intelligence. Chatbot is a computer program that enables to conduct natural conversations with people. As mentioned above, Chatbot conducted conversations in text, but Chatbot, in this study evolves to perform commands based on speech-recognition. In order for Chatbot to perfectly emulate a human dialogue, it is necessary to analyze the sentence correctly and extract appropriate response. To accomplish this, the sentence is classified into three types: objects, actions, and preferences. This study shows how objects is analyzed and processed, and also demonstrates the possibility of evolving from an elementary model to an advanced intelligent system. By this study, it will be evaluated that speech-recognition based Chatbot have improved order-processing time efficiency compared to text based Chatbot. Once this study is done, speech-recognition based Chatbot have the potential to automate customer service and reduce human effort.

Short Text Classification for Job Placement Chatbot by T-EBOW (T-EBOW를 이용한 취업알선 챗봇용 단문 분류 연구)

  • Kim, Jeongrae;Kim, Han-joon;Jeong, Kyoung Hee
    • Journal of Internet Computing and Services
    • /
    • v.20 no.2
    • /
    • pp.93-100
    • /
    • 2019
  • Recently, in various business fields, companies are concentrating on providing chatbot services to various environments by adding artificial intelligence to existing messenger platforms. Organizations in the field of job placement also require chatbot services to improve the quality of employment counseling services and to solve the problem of agent management. A text-based general chatbot classifies input user sentences into learned sentences and provides appropriate answers to users. Recently, user sentences inputted to chatbots are inputted as short texts due to the activation of social network services. Therefore, performance improvement of short text classification can contribute to improvement of chatbot service performance. In this paper, we propose T-EBOW (Translation-Extended Bag Of Words), which is a method to add translation information as well as concept information of existing researches in order to strengthen the short text classification for employment chatbot. The performance evaluation results of the T-EBOW applied to the machine learning classification model are superior to those of the conventional method.

A BERGPT-chatbot for mitigating negative emotions

  • Song, Yun-Gyeong;Jung, Kyung-Min;Lee, Hyun
    • Journal of the Korea Society of Computer and Information
    • /
    • v.26 no.12
    • /
    • pp.53-59
    • /
    • 2021
  • In this paper, we propose a BERGPT-chatbot, a domestic AI chatbot that can alleviate negative emotions based on text input such as 'Replika'. We made BERGPT-chatbot into a chatbot capable of mitigating negative emotions by pipelined two models, KR-BERT and KoGPT2-chatbot. We applied a creative method of giving emotions to unrefined everyday datasets through KR-BERT, and learning additional datasets through KoGPT2-chatbot. The development background of BERGPT-chatbot is as follows. Currently, the number of people with depression is increasing all over the world. This phenomenon is emerging as a more serious problem due to COVID-19, which causes people to increase long-term indoor living or limit interpersonal relationships. Overseas artificial intelligence chatbots aimed at relieving negative emotions or taking care of mental health care, have increased in use due to the pandemic. In Korea, Psychological diagnosis chatbots similar to those of overseas cases are being operated. However, as the domestic chatbot is a system that outputs a button-based answer rather than a text input-based answer, when compared to overseas chatbots, domestic chatbots remain at a low level of diagnosing human psychology. Therefore, we proposed a chatbot that helps mitigating negative emotions through BERGPT-chatbot. Finally, we compared BERGPT-chatbot and KoGPT2-chatbot through 'Perplexity', an internal evaluation metric for evaluating language models, and showed the superity of BERGPT-chatbot.

Identifying Social Relationships using Text Analysis for Social Chatbots (소셜챗봇 구축에 필요한 관계성 추론을 위한 텍스트마이닝 방법)

  • Kim, Jeonghun;Kwon, Ohbyung
    • Journal of Intelligence and Information Systems
    • /
    • v.24 no.4
    • /
    • pp.85-110
    • /
    • 2018
  • A chatbot is an interactive assistant that utilizes many communication modes: voice, images, video, or text. It is an artificial intelligence-based application that responds to users' needs or solves problems during user-friendly conversation. However, the current version of the chatbot is focused on understanding and performing tasks requested by the user; its ability to generate personalized conversation suitable for relationship-building is limited. Recognizing the need to build a relationship and making suitable conversation is more important for social chatbots who require social skills similar to those of problem-solving chatbots like the intelligent personal assistant. The purpose of this study is to propose a text analysis method that evaluates relationships between chatbots and users based on content input by the user and adapted to the communication situation, enabling the chatbot to conduct suitable conversations. To evaluate the performance of this method, we examined learning and verified the results using actual SNS conversation records. The results of the analysis will aid in implementation of the social chatbot, as this method yields excellent results even when the private profile information of the user is excluded for privacy reasons.

Proposal for User-Product Attributes to Enhance Chatbot-Based Personalized Fashion Recommendation Service (챗봇 기반의 개인화 패션 추천 서비스 향상을 위한 사용자-제품 속성 제안)

  • Hyosun An;Sunghoon Kim;Yerim Choi
    • Journal of Fashion Business
    • /
    • v.27 no.3
    • /
    • pp.50-62
    • /
    • 2023
  • The e-commerce fashion market has experienced a remarkable growth, leading to an overwhelming availability of shared information and numerous choices for users. In light of this, chatbots have emerged as a promising technological solution to enhance personalized services in this context. This study aimed to develop user-product attributes for a chatbot-based personalized fashion recommendation service using big data text mining techniques. To accomplish this, over one million consumer reviews from Coupang, an e-commerce platform, were collected and analyzed using frequency analyses to identify the upper-level attributes of users and products. Attribute terms were then assigned to each user-product attribute, including user body shape (body proportion, BMI), user needs (functional, expressive, aesthetic), user TPO (time, place, occasion), product design elements (fit, color, material, detail), product size (label, measurement), and product care (laundry, maintenance). The classification of user-product attributes was found to be applicable to the knowledge graph of the Conversational Path Reasoning model. A testing environment was established to evaluate the usefulness of attributes based on real e-commerce users and purchased product information. This study is significant in proposing a new research methodology in the field of Fashion Informatics for constructing the knowledge base of a chatbot based on text mining analysis. The proposed research methodology is expected to enhance fashion technology and improve personalized fashion recommendation service and user experience with a chatbot in the e-commerce market.

A Development of Chatbot for Emotional Stress Recognition and Management using NLP (자연어 처리를 이용한 감정 스트레스 인지 및 관리 챗봇 개발)

  • Park, Jong-Jin
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.67 no.7
    • /
    • pp.954-961
    • /
    • 2018
  • In this paper, a chatbot for emotional stress recognition and management using rule-based method and NLP is designed and developed to tackle various emotional stresses of people through questionnaire. For this, Dialogflow as open chatbot development platform and Facebook messenger as chatting platform are used. We can build natural and resourceful conversational experiences through predefined questions by using powerful tools of Dialogflow, and can use developed chatbot on the Facebook page messenger. Developed chatbot perceives emotional stresses of user by user-input which is either text or choice of predefined answer. It also gives user questions according to the user's feeling, and assess the strength of the emotional stresses, and provide a solution to the user. Further research can improve the developed chatbot by using open Korean NLP library and database of emotions and stresses.

Pilot Development of a 'Clinical Performance Examination (CPX) Practicing Chatbot' Utilizing Prompt Engineering (프롬프트 엔지니어링(Prompt Engineering)을 활용한 '진료수행시험 연습용 챗봇(CPX Practicing Chatbot)' 시범 개발)

  • Jundong Kim;Hye-Yoon Lee;Ji-Hwan Kim;Chang-Eop Kim
    • The Journal of Korean Medicine
    • /
    • v.45 no.1
    • /
    • pp.203-214
    • /
    • 2024
  • Objectives: In the context of competency-based education emphasized in Korean Medicine, this study aimed to develop a pilot version of a CPX (Clinical Performance Examination) Practicing Chatbot utilizing large language models with prompt engineering. Methods: A standardized patient scenario was acquired from the National Institute of Korean Medicine and transformed into text format. Prompt engineering was then conducted using role prompting and few-shot prompting techniques. The GPT-4 API was employed, and a web application was created using the gradio package. An internal evaluation criterion was established for the quantitative assessment of the chatbot's performance. Results: The chatbot was implemented and evaluated based on the internal evaluation criterion. It demonstrated relatively high correctness and compliance. However, there is a need for improvement in confidentiality and naturalness. Conclusions: This study successfully piloted the CPX Practicing Chatbot, revealing the potential for developing educational models using AI technology in the field of Korean Medicine. Additionally, it identified limitations and provided insights for future developmental directions.

A Study on Chatbot Profile Images Depending on the Purpose of Use (사용 목적에 따른 챗봇의 프로필 이미지 연구)

  • Kang, Minjeong
    • The Journal of the Korea Contents Association
    • /
    • v.18 no.12
    • /
    • pp.118-129
    • /
    • 2018
  • In AI chatbot service via a messenger, a profile image of the chatbot is the first thing that users see to communicate with the chatbot. This profile image not only manages an impression about the profile owner in SNS on followers, but also makes an important impression about chatbot services on users. Thus motivated, this study investigates proper profile images tailored for the types of chatbot services and users. Specifically, I reviewed the preferred images and expressions of chatbots for each purpose of chatbot service. Then, in a case study, I collected and analyzed the representative chatbot profile images for the purpose of fun and counseling. The profile images are categorized as robot, human, animal, and abstract images. Based on these categories, I surveyed the preferred profile image of the chatbot service in either the text type or image type alternatives. For the purpose of fun, in the text version, I found that both men and women preferred a human image to others. However, in the image version, men preferred woman and robot images while women preferred cute animation character and robot images. For counseling services, both men and women preferred woman and animal images most, which is similar to the results of the text version of questionnaires as well. While both genders consistently preferred real photo images, women tend to like abstract images more than men do. I expect that the results of this study would be useful to develop the proper profile images of AI chatbot for each service purpose.

A Study on the Restaurant Recommendation Service App Based on AI Chatbot Using Personalization Information

  • Kim, Heeyoung;Jung, Sunmi;Ryu, Gihwan
    • International Journal of Advanced Culture Technology
    • /
    • v.8 no.4
    • /
    • pp.263-270
    • /
    • 2020
  • The growth of the mobile app markets has made it popular among people who recommend relevant information about restaurants. The recommendation service app based on AI Chatbot is that it can efficiently manage time and finances by making it easy for restaurant consumers to easily access the information they want anytime, anywhere. Eating out consumers use smartphone applications for finding restaurants, making reservations, and getting reviews and how to use them. In addition, social attention has recently been focused on the research of AI chatbot. The Chatbot is combined with the mobile messenger platform and enabling various services due to the text-type interactive service. It also helps users to find the services and data that they need information tersely. Applying this to restaurant recommendation services will increase the reliability of the information in providing personal information. In this paper, an artificial intelligence chatbot-based smartphone restaurant recommendation app using personalization information is proposed. The recommendation service app utilizes personalization information such as gender, age, interests, occupation, search records, visit records, wish lists, reviews, and real-time location information. Users can get recommendations for restaurants that fir their purpose through chatting using AI chatbot. Furthermore, it is possible to check real-time information about restaurants, make reservations, and write reviews. The proposed app uses a collaborative filtering recommendation system, and users receive information on dining out using artificial intelligence chatbots. Through chatbots, users can receive customized services using personal information while minimizing time and space limitations.