• 제목/요약/키워드: Text-as-data

검색결과 2,032건 처리시간 0.028초

MeSH 기반의 LDA 토픽 모델을 이용한 검색어 확장 (The MeSH-Term Query Expansion Models using LDA Topic Models in Health Information Retrieval)

  • 유석진
    • 한국도서관정보학회지
    • /
    • 제52권1호
    • /
    • pp.79-108
    • /
    • 2021
  • 헬스 분야에서 정보 검색의 어려움 중의 하나는 일반 사용자들이 전문적인 용어들을 이해하기가 어렵다는 점이다. 헬스와 관련된 전문 용어들은 일반 사용자들이 검색어로 사용하기 어렵기 때문에 이러한 전문 용어들이 자동적으로 검색어에 더해질 수 있다면 좀 더 검색의 효과를 높일 수 있을 것이다. 제안된 검색어 확장 모델은 전문 용어를 포함하는 MeSH(Medical Subject Headings)를 검색어 확장을 위한 단어 후보 군으로 이용하였다. 문서들은 MeSH용어들로 표현이 되고 이렇게 표현된 문서들의 집합에 대해서 LDA(Latent Dirichlet Analysis) 토픽들이 생성된 후, (검색어+초기 검색어에 의해 검색된 상위 k개 문서들)에 연관된 토픽 단어들이 원래의 검색어를 확장하는 데 쓰여졌다. MeSH로 구성된 토픽 단어들은 임의로 정해진 토픽 확률 임계값과 토픽을 구성하는 단어의 확률 임계값보다 높았을 때 초기의 검색어에 포함되었다. 특정수의 토픽을 갖는 LDA 모델에서 이러한 적절한 임계값의 설정을 통해 선택된 토픽 단어들은 검색어 확장에 이용되어 검색시에 infAP(inferred Average Precision)와 infNDCG(inferred Normalized Discounted Cumulative Gain)를 높이는데 효과적으로 작용하였다. 또한 토픽 확률값과 토픽 단어의 확률값을 곱하여 계산된 토픽 단어의 스코어가 높은 상위 k개의 단어를 검색어를 확장하는 데 이용하였을 때에도 검색의 성능이 향상될 수 있음을 확인하였다.

AI를 활용한 시추주상도 자동 디지털 DB화 방안에 관한 연구 (A Study on the Automatic Digital DB of Boring Log Using AI)

  • 박가현;한진태;윤영노
    • 한국지반공학회논문집
    • /
    • 제37권11호
    • /
    • pp.119-129
    • /
    • 2021
  • 국토지반정보 포털시스템에서 관리되는 지반정보는 사람이 직접 PDF 파일을 보고 일일이 타이핑을 해서 구축하고 있기 때문에 인적·시간적 자원 소모가 크며, 정확도 문제가 빈번하게 발생한다. 본 연구에서는 다양한 지반정보 중에서 국내에서 가장 일반적이고 널리 활용되고 있는 시추주상도를 대상으로 인공지능(Artificial Intelligence, AI)을 활용하여 자동 디지털 데이터베이스 구축하는 방안에 대해 제안하였다 우선, 다양한 시추주상도 양식에 대해서도 예외없이 데이터를 자동으로 데이터베이스화 하기 위해서 딥러닝모델 ResNet 34를 이용하여 시추주상도 양식분류를 하였으며, 총 6가지 시추주상도 양식에 대해 이미지 분류를 진행하여 전체 정확도(accuracy)는 99.7, ROC_AUC score는 1.0의 매우 높은 정확도로 시추주상도 양식을 분리할 수 있었다. 이 후, 각각의 양식에 대하여 미세조정(fine-tuning)된 로보틱 처리 자동화 기법을 이용하여 PDF 내 텍스트를 자동으로 읽어 들인 후 시추주상도 내 일반정보, SPT 시험정보 및 지층정보에 대해 데이터를 추출, 분리하여 이 값들을 기존 국토지반정보 포털시스템에서 제공하는 형태와 동일한 형태의 DB로 구축하도록 구현하였다. 최종적으로 기존 국토지반정보 포털시스템에서 제공하는 형태와 동일한 형태로 시추주상도내 정보를 초당 140페이지의 속도로 자동으로 DB화 할 수 있었다.

MZ세대에 대한 대중감성 연구: 소셜미디어(SNS) 감성 분석을 통해 (A Study on Popular Sentiment for Generation MZ: Through social media (SNS) sentiment analysis)

  • 안명숙
    • 문화기술의 융합
    • /
    • 제9권1호
    • /
    • pp.19-26
    • /
    • 2023
  • 본 연구에서는 소셜 미디어 빅데이터 감성분석 방법을 통해 'MZ세대'에 대한 대중 감성을 살펴보았다. 분석을 위해 소비자 계정 SNS 텍스트를 살펴보고 내용상 외부 감성과 MZ세대 본인들의 감성을 분류하여 긍정 및 부정 감성 요인들을 제시하였다. 이에 따른 결론은 'MZ세대' 관련하여 호감과 흥미의 긍정정서가 72.1%로, 부정적인 감성비율 27.9 % 보다 높았다. 긍정감성에서 기성세대들은 'MZ세대의 개성과 당당함에 대한 호감', '새로운 가치관을 가진 MZ세대에 대한 흥미'를 보였다. 이에 비해 MZ세대들은 '자신들의 당당함, 발랄함 및 개성 세대라는 점'과 '소소한 성장주의'에 대한 호감을 갖고 있다. MZ세대 외부의 부정감성은 'MZ세대의 결혼기피, 취업난, 빚투자 및 퇴사 트랜드에 대해 걱정', '꼰대 취급하는 MZ 세대 미움', 'MZ세대와 대화하기 힘듦'으로 나타났다. 한편, MZ세대 본인들이 느끼는 부정감성은 '일반화에 대한 거부감', '세대 및 젠더 갈등과 기성세대보다 심한 경쟁에 대한 거부감', '풍요로운 시대의 상대적 실패감', '예고된 기후재앙 속에서 살아야하는 슬픔'으로 나타났다. 따라서 기성세대는 MZ세대를 일반화하여 바라볼 것이 아니라 개인으로 보아야 하며, 세대간 이해와 공감으로 갈등을 완화해야한다. 세대 갈등, 젠더 갈등 및 환경문제 해결을 위한 공동체적인 고민의 필요성도 있다.

대학교양 교육과정 개발의 융합적 접근 - 소매틱스(Somatics)에 기반한 체육교양강좌 사례연구 (An Integral Approach in Liberal Arts Curriculum of Higher Education - A Case Study on Physical Education Based on the Somatics)

  • 임수진;김수연
    • 한국체육학회지인문사회과학편
    • /
    • 제57권3호
    • /
    • pp.117-133
    • /
    • 2018
  • 본 연구의 목적은 융합교육을 지향하는 체육교양강좌의 목표, 내용, 방법, 평가 등 전반적인 교육과정을 살펴보고 체육교양강좌의 융합적 접근 방안을 탐색하는 데 있다. 융합교육을 실천하기 위한 체육교양강좌가 어떻게 이루어지고 있는지를 파악하여 대학교양 융합교육에 시사점을 제시하고자 한다. 이에 체육교양강좌에서 융합적 접근을 실천하는 서울 소재 서울소재E여자대학교의 체육교양강좌, "움직임을 통한 감정 코칭"을 2017년 3월부터 11월까지 수업관찰하고 심층면담(7명)을 진행하였다. 그 결과 "움직임을 통한 감정 코칭" 수업은 다학제간 교육과정, 인문학적 방법론, 이론과 실제의 통합교육으로 이루어지고 있음을 확인하였다. 구체적으로 첫째, 움직임을 통한 감정 코칭은 인문과학과 자연과학을 통합적으로 접근하는 '몸이해'를 위한 학제간 교육이다. 둘째, 긍정심리학과 신경생리학적으로 접근하여 '텍스트의 일상화'를 실천하는 융합교육이다. 셋째, '이론과 실습이 통합'된 체육교양강좌이다. 이러한 결과는 체육교양강좌를 통해 자신의 신체를 이해하고, 일상적이고 고정적인 움직임 및 반응의 패턴을 스스로 관찰함으로써 사고 및 행동의 전환을 촉발하며, 이러한 과정을 거쳐 타인을 이해하는 공감 능력을 함양할 수 있음을 시사한다.

CNN 딥러닝을 활용한 경관 이미지 분석 방법 평가 - 힐링장소를 대상으로 - (Assessment of Visual Landscape Image Analysis Method Using CNN Deep Learning - Focused on Healing Place -)

  • 성정한;이경진
    • 한국조경학회지
    • /
    • 제51권3호
    • /
    • pp.166-178
    • /
    • 2023
  • 본 연구는 이용자들의 인식과 경험이 내재된 소셜미디어 사진에서 경관 이미지를 분석하기 위한 방법으로 CNN 딥러닝 방법을 소개하고 평가하는 데 그 목적이 있다. 본 연구에서는 힐링장소를 연구의 대상으로 설정하여 경관 이미지를 분석하였다. 연구를 위해 텍스트마이닝과 선행연구 고찰을 통해 힐링과 관련되는 7가지의 경관 형용사를 선정하였다. 이후 CNN 딥러닝 학습 사진 구축을 위해 50명의 평가자를 모집하였으며, 평가자들에게 포털사이트에서 '힐링', '힐링풍경', '힐링장소'로 검색되는 사진 중 7가지 형용사마다 가장 적합한 사진을 3장씩 수집하도록 하였다. 수집된 사진을 정제 및 데이터 증강 과정을 거쳐 CNN 모델을 제작하였다. 이후 힐링장소 경관 분석을 위해 포털사이트에서 '힐링'과 '힐링풍경'으로 검색되는 15,097장의 사진을 수집하여 이를 분류하였다. 연구결과 '기타'와 '실내'를 제외한 범주에서 '조용한'이 2,093장(22%)으로 가장 높게 나타났으며, '개방적인', '즐거운', '안락한', '깨끗한', '자연적인', '아름다운' 순으로 나타났다. CNN 딥러닝은 경관 이미지 분석에서도 결과를 도출 가능한 분석 방법임을 연구를 통해 알 수 있었다. 또한, 기존 경관 분석 방법을 보완할 수 있는 하나의 방법임을 시사하였고, 경관 이미지 학습 데이터 셋 구축을 통한 향후 심층적이고 다양한 경관 분석을 제안한다.

Feedback on Peer Feedback in EFL Composing: Four Stories

  • Huh, Myung-Hye;Lee, Jang Ho
    • 영어영문학
    • /
    • 제57권6호
    • /
    • pp.977-998
    • /
    • 2011
  • The purpose of this study is to investigate prospective teachers' perceptions of the peer review comments readily available to them during the writing process in a teacher training class. Given these needs, we employ a qualitative method of inquiry giving voice to the learner's own view of peer feedback. The data we wish to consider is first-person narratives elicited from four EFL college students, who are prospective teachers of English. With regard to the EFL students' narrative considered here, all were attentive to the feedback they received. Moreover, the way in which these EFL writers talk about peer response activity reflects that they still welcome peer feedback because of the benefits to be accrued from it. Although this study, covering only four EFL students in total, can hardly be considered conclusive, we attempt to offer a synthesis of their stories. First of all, students indicate that they received responses from "authentic readers" (Mittan 1989, 209). We do note, consequently, that students gain a clear understanding of readers' needs by receiving feedback on what they did well and on what seems unclear. Perhaps the greater effect of peer feedback claimed by these students is that they take active roles in utilizing peer comments. Since they feel uncertain about the validity of their classmates' responses, students feel that they have autonomy over their own text and can make their own decisions on whether they should accept their peer comments or not. This contrasts with their treatment of teacher comments that they accept begrudgingly even if they disagree with them. Four EFL writers talked a lot, typically in a positive way, about peer response to their writing, yet they have expressed reservations about the extent to which they should put any credence in comments offered by their fellow students. Perhaps this is because their fellow students are still developing writers and EFL learners. In turn, they were sometimes reluctant to accept the peers' comments. Thus, in EFL contexts, L1 use can be suggested during peer feedback sessions. In particular, we have come to feel that L1 use enables both reviewers and receivers to have more productive peer review experiences. Additionally, we need to train students not "to see peer feedback as potentially bad advice" (Silva et al. 2003, 111). Teachers should focus on training students to utilize their peers' comments. Without such training, students will either ignore feedback or fail to use it constructively.

스마트 관광 활성화를 위한 트립어드바이저 애플리케이션 리뷰 분석 : 토픽 모델링을 중심으로 (Analyzing TripAdvisor application reviews to enable smart tourism : focusing on topic modeling)

  • 이유나;한무명초;유선영;소미기;노미진
    • 스마트미디어저널
    • /
    • 제12권8호
    • /
    • pp.9-17
    • /
    • 2023
  • 정보통신의 발달과 스마트 기기의 발전 및 보급 향상은 관광 형태의 변화를 야기하였고, 이후 스마트 관광이라는 개념이 등장하였다. 이에 스마트 관광 정책 및 설문에 관한 연구가 진행되고 있으나 애플리케이션 리뷰에 관한 연구는 미비한 편이다. 본 연구는 구글 플레이 스토어 내 스마트 관광 분야의 대표적인 애플리케이션인 트립어드바이저 애플리케이션 리뷰 데이터를 수집하여 LDA(Latent Dirichlet Allocation) 토픽 모델링을 통해 사용 용도와 사용자 만족을 파악하고자 한다. 분석 결과 4개의 토픽이 도출되었으며 2개의 토픽에서는 긍정적인 평가를 나머지 2개의 토픽에서는 부정적인 평가를 하고 있었다. 사용자들은 해당 애플리케이션의 숙박 및 관광 명소 추천 시스템에 만족하고 있음을 알 수 있었으며 검색 시 설정한 필터가 적용되지 않거나 업데이트 후 리뷰가 게시되지 않음에 불편을 겪고 있음을 알 수 있었다. 이에 다양한 추천 카테고리를 애플리케이션에 추가하여 사용자에게 다양한 경험을 제공하는 것이 만족도 향상에 도움이 될 것으로 기대된다. 또한 필터 기능을 포함한 애플리케이션 문제를 파악하여 애플리케이션 환경 점검과 해당 기능 오류 개선을 한다면 사용자 만족도를 향상시킬 수 있을 것으로 기대된다.

이미지 캡션 및 재귀호출을 통한 스토리 생성 방법 (Automated Story Generation with Image Captions and Recursiva Calls)

  • 전이슬;조동하;문미경
    • 융합신호처리학회논문지
    • /
    • 제24권1호
    • /
    • pp.42-50
    • /
    • 2023
  • 기술의 발전은 제작 기법, 편집 기술 등 미디어 산업 전반에 걸쳐 디지털 혁신을 이루어 왔고, OTT 서비스와 스트리밍 시대를 관통하며 소비자 관람 형태의 다양성을 가져왔다. 빅데이터와 딥러닝 네트워크의 융합으로 뉴스 기사, 소설, 대본 등 형식을 갖춘 글을 자동으로 생성하였으나 작가의 의도를 반영하고 문맥적으로 매끄러운 스토리를 생성한 연구는 부족하였다. 본 논문에서는 이미지 캡션 생성 기술로 스토리보드 속 사진의 흐름을 파악하고, 언어모델을 통해 이야기 흐름이 자연스러운 스토리를 자동 생성하는 것을 기술한다. 합성곱 신경망(CNN)과 주의 집중기법(Attention)을 활용한 이미지 캡션 생성 기술을 통해 스토리보드의 사진을 묘사하는 문장을 생성하고, 첫 번째 이미지 캡션을 KoGPT-2에 입력하여 생성된 새로운 글과 두 번째 이미지의 캡션을 다음 입력값으로 활용한 재귀적 접근 방안을 제안하여 전후 문맥이 자연스럽고 기획 의도에 맞는 스토리를 생성하는 연구를 진행한다. 본 논문으로 인공지능을 통해 작가의 의도를 반영한 스토리를 자동으로 대량 생성하여 콘텐츠 창작의 고통을 경감시키고, 인공지능이 디지털 콘텐츠 제작의 전반적인 과정에 참여하여 미디어 지능화를 활성화한다.

부산항 항만안전 주요 이슈 동향에 관한 연구 (A Study on Trends of Key Issues in Port Safety at Busan Port)

  • 이정민;하도연;김주혜
    • 한국항해항만학회지
    • /
    • 제48권1호
    • /
    • pp.34-48
    • /
    • 2024
  • 글로벌 공급망에 예측 불가능한 위험성이 확산되면서 세계의존도가 높은 항만물류산업의 위험부담이 높아지고 있다. 이에 본 연구에서는 기초적인 연구로 국내 항만의 안전성에 위험을 주는 다양한 이슈들을 알아보고자 하였다. 이를 위해 부산항의 항만안전과 관련된 뉴스 기사 데이터를 활용하여 LDA토픽모델링 분석과 시계열 선형회귀분석을 진행하였고 부산항 항만안전 주요 이슈들의 변화와 그 동향을 파악하였다. 본 연구의 분석 결과는 다음과 같다. 지난 30년동안 부산항 항만안전과 관련된 주요 이슈는 총 9개이며 이들을 5년 주기의 시기별로 살펴본 결과, 지난 30년 동안 해상안전 이슈, 수입화물 검역 안전 이슈, 노조파업 관련 이슈, 자연재해 관련 이슈가 지속해서 등장했다. 부산항 항만안전 주요 이슈는 주로 예측 불가능한 성격이 큰 사회환경적 유형과 자연현상적 유형으로 글로벌 불확실성의 영향을 많이 받고 있음을 알 수 있었다. 따라서 분석 결과로 도출된 항만안전 주요 이슈들을 위주로 부산항 항만안전 강화를 위한 정책을 체계적으로 수립할 필요가 있으며 예측 불가능한 위험상황을 대비한 부산항 항만안전 회복탄력성을 강화할 필요가 있다. 끝으로 다양하게 변화하는 사회적 여건에 맞춰 항만안전 강화를 도모할 수 있는 선진적인 연구 활동이 필요할 것이다.

뇌파, 시선추적 및 인공지능 기술에 기반한 디지털 도서관 인터페이스 연구: 암묵적 적합성 피드백 활용을 중심으로 (Digital Library Interface Research Based on EEG, Eye-Tracking, and Artificial Intelligence Technologies: Focusing on the Utilization of Implicit Relevance Feedback)

  • 김현희;김용호
    • 정보관리학회지
    • /
    • 제41권1호
    • /
    • pp.261-282
    • /
    • 2024
  • 본 연구는 디지털 도서관의 콘텐츠를 탐색하는 동안 이용자의 암묵적 적합성 피드백을 활용하여 적합성을 판단하기 위해 뇌파 기반 및 시선추적 기반 방법들을 제안하고 평가해 보았다. 이를 위해서 32명을 대상으로 하여 동영상, 이미지, 텍스트 데이터를 활용하여 뇌파/시선추적 실험들을 수행하였다. 제안된 방법들의 유용성을 평가하기 위해서, 딥러닝 기반의 인공지능 방법들을 경쟁 기준으로 사용하였다. 평가 결과, 주제에 적합한 동영상과 이미지(얼굴/감정)를 선택하는 데에는 뇌파 컴포넌트 기반 방법들(av_P600, f_P3b)이 높은 분류 정확도를 나타냈고, 이미지(객체)와 텍스트(신문 기사)를 선택하는 데에는 인공지능 기반 방법 즉, 객체 인식 기반 방법과 자연언어 처리 방법이 각각 높은 분류 정확도를 나타냈다. 끝으로, 뇌파, 시선추적 및 인공지능 기술에 기반한 디지털 도서관 인터페이스를 구현하기 위한 지침 즉, 암묵적 적합성 피드백에 기반한 시스템 모형을 제안하고, 분류 정확도를 향상시키기 위해서 미디어별로 적합한 뇌파 기반, 시선추적 기반 및 인공지능 기반 방법들을 제시하였다.