• 제목/요약/키워드: Text-To-Speech

검색결과 505건 처리시간 0.025초

특허 데이터 기반 생성형 AI 기술 동향 분석 (Analysis of Generative AI Technology Trends Based on Patent Data)

  • 유성무;송태원;이민정;최윤주;설순욱
    • 한국정보전자통신기술학회논문지
    • /
    • 제17권1호
    • /
    • pp.1-9
    • /
    • 2024
  • 본 논문은 특허 출원 문서를 기초로 하여 생성형 AI 기술의 동향을 분석한다. 이를 위해 2003년부터 2023년까지 한국, 미국, 유럽에서 출원된 생성형 AI 관련 특허 5,433건을 선별하고, 국가별, 기술 분야별, 연도별, 출원인별 데이터를 분석하고 시각적으로 제시함으로써 시사점을 찾고 기술 흐름을 확인하고자 한다. 분석 결과, 이미지 분야의 특허가 36.9%로 가장 많고 지속적으로 출원 건수가 상승하고 있지만, 문장/문서나 음악/음성 분야는 2019년 이후로 출원이 감소하거나 유지되고 있다. 가장 많은 특허를 출원한 기업은 한국 기업이지만 상위 5개 출원인 중 4개가 미국 기업이며 모든 기업이 미국에 가장 많은 특허를 출원하고 있어 생성형 AI는 미국 시장을 중심으로 성장하고 경쟁하고 있음을 확인하였다. 논문의 분석 결과는 향후 생성형 AI 연구 개발과 지식 재산 확보 전략을 수립하는 데 활용될 수 있을 것으로 기대된다.

A Study on the Classification of Unstructured Data through Morpheme Analysis

  • Kim, SungJin;Choi, NakJin;Lee, JunDong
    • 한국컴퓨터정보학회논문지
    • /
    • 제26권4호
    • /
    • pp.105-112
    • /
    • 2021
  • 빅데이터 시대에 접어들며 데이터에 대한 관심이 폭발적으로 늘어나고 있다. 특히, 인터넷 및 소셜미디어의 발전은 새로운 데이터들의 생성으로 연결되어 빅데이터와 인공지능 시대의 실현과 융합 기술의 새로운 장을 열 수 있게 되었으며, 과거에는 프로그램으로 다루지 못하던 데이터에 대한 분석 요구가 많이 발생하고 있다. 본 논문에서는 빅데이터 시대에서 많이 요구되는 비정형 데이터에 대한 분류를 위하여 분석 모델을 설계하고 이를 검증하였다. 데이터는 디비피아의 논문 요약과 주제어, 그리고 부주제 어를 크롤링하였으며, 코엔엘피의 데이터 사전을 이용해 데이터베이스를 생성하고, 형태소 분석을 통하여 단어의 토큰화 과정을 수행하였다. 또한, 카이스트의 9 품사 분류 체계를 이용해 명사를 추출하고, TF-IDF 값을 생성하였으며, 학습 데이터와 Y 값을 결합하여 분석 데이터 셋을 생성하였다. 이와 같이 생성된 분석 데이터 셋에 랜덤 포레스트와 서포트 벡터 머신 그리고 의사결정트리, 이렇게 세 가지 분석 알고리즘을 적용하여 분류의 적정성을 측정하였다. 본 논문에서 제안한 분류 모델 기법은 논문 분류 외에도 민원 분류 분석 및 텍스트 관련 분석 등 다양한 분야에 유용하게 사용될 수 있다.

사전과 말뭉치를 이용한 한국어 단어 중의성 해소 (Korean Word Sense Disambiguation using Dictionary and Corpus)

  • 정한조;박병화
    • 지능정보연구
    • /
    • 제21권1호
    • /
    • pp.1-13
    • /
    • 2015
  • 빅데이터 및 오피니언 마이닝 분야가 대두됨에 따라 정보 검색/추출, 특히 비정형 데이터에서의 정보 검색/추출 기술의 중요성이 나날이 부각되어지고 있다. 또한 정보 검색 분야에서는 이용자의 의도에 맞는 결과를 제공할 수 있는 검색엔진의 성능향상을 위한 다양한 연구들이 진행되고 있다. 이러한 정보 검색/추출 분야에서 자연어처리 기술은 비정형 데이터 분석/처리 분야에서 중요한 기술이고, 자연어처리에 있어서 하나의 단어가 여러개의 모호한 의미를 가질 수 있는 단어 중의성 문제는 자연어처리의 성능을 향상시키기 위해 우선적으로 해결해야하는 문제점들의 하나이다. 본 연구는 단어 중의성 해소 방법에 사용될 수 있는 말뭉치를 많은 시간과 노력이 요구되는 수동적인 방법이 아닌, 사전들의 예제를 활용하여 자동적으로 생성할 수 있는 방법을 소개한다. 즉, 기존의 수동적인 방법으로 의미 태깅된 세종말뭉치에 표준국어대사전의 예제를 자동적으로 태깅하여 결합한 말뭉치를 사용한 단어 중의성 해소 방법을 소개한다. 표준국어대사전에서 단어 중의성 해소의 주요 대상인 전체 명사 (265,655개) 중에 중의성 해소의 대상이 되는 중의어 (29,868개)의 각 센스 (93,522개)와 연관된 속담, 용례 문장 (56,914개)들을 결합 말뭉치에 추가하였다. 품사 및 센스가 같이 태깅된 세종말뭉치의 약 79만개의 문장과 표준국어대사전의 약 5.7만개의 문장을 각각 또는 병합하여 교차검증을 사용하여 실험을 진행하였다. 실험 결과는 결합 말뭉치를 사용하였을 때 정확도와 재현율에 있어서 향상된 결과가 발견되었다. 본 연구의 결과는 인터넷 검색엔진 등의 검색결과의 성능향상과 오피니언 마이닝, 텍스트 마이닝과 관련한 자연어 분석/처리에 있어서 문장의 내용을 보다 명확히 파악하는데 도움을 줄 수 있을 것으로 기대되어진다.

AI면접 대상자에 대한 다면적 평가방법론 -얼굴인식, 음성분석, 자연어처리 영역의 융합 (Multifaceted Evaluation Methodology for AI Interview Candidates - Integration of Facial Recognition, Voice Analysis, and Natural Language Processing)

  • 지현욱;이상진;문성민;이재열;이동은;임규상
    • 한국컴퓨터정보학회:학술대회논문집
    • /
    • 한국컴퓨터정보학회 2024년도 제69차 동계학술대회논문집 32권1호
    • /
    • pp.55-58
    • /
    • 2024
  • 최근 각 기업의 AI 면접시스템 도입이 증가하고 있으며, AI 면접에 대한 실효성 논란 또한 많은 상황이다. 본 논문에서는 AI 면접 과정에서 지원자를 평가하는 방식을 시각, 음성, 자연어처리 3영역에서 구현함으로써, 면접 지원자를 다방면으로 분석 방법론의 적절성에 대해 평가하고자 한다. 첫째, 시각적 측면에서, 면접 지원자의 감정을 인식하기 위해, 합성곱 신경망(CNN) 기법을 활용해, 지원자 얼굴에서 6가지 감정을 인식했으며, 지원자가 카메라를 응시하고 있는지를 시계열로 도출하였다. 이를 통해 지원자가 면접에 임하는 태도와 특히 얼굴에서 드러나는 감정을 분석하는 데 주력했다. 둘째, 시각적 효과만으로 면접자의 태도를 파악하는 데 한계가 있기 때문에, 지원자 음성을 주파수로 환산해 특성을 추출하고, Bidirectional LSTM을 활용해 훈련해 지원자 음성에 따른 6가지 감정을 추출했다. 셋째, 지원자의 발언 내용과 관련해 맥락적 의미를 파악해 지원자의 상태를 파악하기 위해, 음성을 STT(Speech-to-Text) 기법을 이용하여 텍스트로 변환하고, 사용 단어의 빈도를 분석하여 지원자의 언어 습관을 파악했다. 이와 함께, 지원자의 발언 내용에 대한 감정 분석을 위해 KoBERT 모델을 적용했으며, 지원자의 성격, 태도, 직무에 대한 이해도를 파악하기 위해 객관적인 평가지표를 제작하여 적용했다. 논문의 분석 결과 AI 면접의 다면적 평가시스템의 적절성과 관련해, 시각화 부분에서는 상당 부분 정확도가 객관적으로 입증되었다고 판단된다. 음성에서 감정분석 분야는 면접자가 제한된 시간에 모든 유형의 감정을 드러내지 않고, 또 유사한 톤의 말이 진행되다 보니 특정 감정을 나타내는 주파수가 다소 집중되는 현상이 나타났다. 마지막으로 자연어처리 영역은 면접자의 발언에서 나오는 말투, 특정 단어의 빈도수를 넘어, 전체적인 맥락과 느낌을 이해할 수 있는 자연어처리 분석모델의 필요성이 더욱 커졌음을 판단했다.

  • PDF

서울지하철의 지능형 광고 비즈니스모델 설계 (Designing an Intelligent Advertising Business Model in Seoul's Metro Network)

  • ;임규건
    • 지능정보연구
    • /
    • 제23권4호
    • /
    • pp.1-31
    • /
    • 2017
  • 현대 기업들은 효율성과 생산성을 향상시킬 뿐 아니라 시장 진출을 위해 새로운 기술들을 채택하고 있다. 광고 업계도 전통적인 채널 (라디오, TV 및 인쇄 매체)에서 인터넷, 소셜 미디어, 모바일 기반광고와 같은 새로운 매체로 지속적인 파괴적 혁신을 경험하고 있다. 본 연구는 서울 지하철에 지능형 광고 비즈니스 모델을 제안한 사례이다. 서울은 세계에서 가장 분주 한 지하철 중 하나로서 메트로 네트워크를 통해 마케팅 담당자가 다양한 고객과 잠재 고객 모두와 교류하고 상호 작용할 수 있는 플랫폼이 될 수 있다. 현재의 광고 매체의 대부분은 공간, 조명 등 국부적 한계를 가지고 있으나 본 사례의 지능형 디지털 광고 플랫폼은 데이터로 구동되는 광고를 통해 위치기반 모바일 전자상거래를 제공할 수 있다. 등록된 지하철 카드를 통해 고객 데이터를 분석하고 특정 고객 그룹을 타겟팅하고, 대상 소비자 그룹을 기반으로 광고 사용자를 정의하고, 동영상, 애니메이션, 쿠폰, 문자 등 다양한 광고 형식을 제공 할 수 있다. 위치 정보를 통해 다음역을 탐지하여 지하철 안의 스크린이 다음 정차 할 역의 광고에 우선 순위를 부여하고, 사용자 모바일에서 알림을 수신하도록 선택한 고객은 광고주의 사업장 근처에 접근 할 때 알림을 받게 된다. 또한, 내비게이션 서비스를 통해 지하 쇼핑몰의 고객이 상점, 제품, 시설, 이벤트 등을 검색하고 광고나 추천서비스를 받을 수 있게 한다. 이러한 광고는 고객이 광고를 클릭하면 제품 설명 페이지로 연결되어 전자 상거래로 이어지도록 한다. 이 모델을 통해 개선된 고객 경험뿐만 아니라 지하상가의 중소기업 지원, 새로운 직업 기회, 비즈니스 모델 운영자에 대한 추가 매출 및 광고 유연성 등 새로운 가치 창출이 가능할 것으로 기대된다.