• Title/Summary/Keyword: Text series study

Search Result 103, Processing Time 0.025 seconds

A Study on the Archival Information Services of Economic Policy Using Text Mining Methods: Focusing on Economic Policy Directions (텍스트 마이닝을 활용한 경제정책기록서비스 연구: 경제정책방향을 중심으로)

  • Yeon, Jihyun;Kim, Sungwon
    • Journal of Korean Society of Archives and Records Management
    • /
    • v.22 no.2
    • /
    • pp.117-133
    • /
    • 2022
  • The archival content listed arbitrarily makes it difficult for users to efficiently access the records of major economic policies, especially given that they use it without understanding the required period and context. Using the text mining techniques in the 30-year economic policy direction from 1991 to 2021, this paper derives economic-related keywords and changes that the government mainly dealt with. It collects and preprocesses major economic policies' background, main content, and body text and conducts text frequency, term frequency-inverse document frequency (TF-IDF), network, and time series analyses. Based on these analyses, the following words are recorded in order of frequency: "job(일자리)," "competitive(경쟁력)," and "restructuring(구조조정)." In addition, the relative ratio of "job (일자리)," "real estate(부동산)," and "corporation(기업)," by year was analyzed in terms of chronological order while presenting major keywords mentioned by each government. Based on the results, this study presents implications for developing and broadening the area of archival information services related to economic policies.

Research Trends Investigation Using Text Mining Techniques: Focusing on Social Network Services (텍스트마이닝을 활용한 연구동향 분석: 소셜네트워크서비스를 중심으로)

  • Yoon, Hyejin;Kim, Chang-Sik;Kwahk, Kee-Young
    • Journal of Digital Contents Society
    • /
    • v.19 no.3
    • /
    • pp.513-519
    • /
    • 2018
  • The objective of this study was to examine the trends on social network services. The abstracts of 308 articles were extracted from web of science database published between 1994 and 2016. Time series analysis and topic modeling of text mining were implemented. The topic modeling results showed that the research topics were mainly 20 topics: trust, support, satisfaction model, organization governance, mobile system, internet marketing, college student effect, opinion diffusion, customer, information privacy, health care, web collaboration, method, learning effectiveness, knowledge, individual theory, child support, algorithm, media participation, and context system. The time series regression results indicated that trust, support satisfaction model, and remains of the topics were hot topics. This study also provided suggestions for future research.

A Study on the Application of Motion Graphics Animation in Opening Titles of Noir Dramas

  • LinLin Huang;Xinyi Shan;Jeanhun Chung
    • International Journal of Advanced Culture Technology
    • /
    • v.12 no.3
    • /
    • pp.278-283
    • /
    • 2024
  • As the introductory content of televison series, the opening titles are crucial for helping the audience quickly grasp the tone of the narrative. With the continuous integration of the televison production industry and digital computer technology, motion graphics, featuring its unique dynamic graphic design, offers new avenues for title sequence creation. This paper dives into the application of motion graphics in the title sequences of noir genre television series, analyzing aspects such as visual style, content presentation, and narrative expression. By comparing early static text title sequences with motion graphics ones, this paper reveals the advantages of motion graphics in designing opening titles for noir genre television series and examines how it enhances visual impact and improves audience experience. This study not only enriches the creative techniques for title sequence design, but also provides valuable insights for future creations.

Text Mining and Visualization of Papers Reviews Using R Language

  • Li, Jiapei;Shin, Seong Yoon;Lee, Hyun Chang
    • Journal of information and communication convergence engineering
    • /
    • v.15 no.3
    • /
    • pp.170-174
    • /
    • 2017
  • Nowadays, people share and discuss scientific papers on social media such as the Web 2.0, big data, online forums, blogs, Twitter, Facebook and scholar community, etc. In addition to a variety of metrics such as numbers of citation, download, recommendation, etc., paper review text is also one of the effective resources for the study of scientific impact. The social media tools improve the research process: recording a series online scholarly behaviors. This paper aims to research the huge amount of paper reviews which have generated in the social media platforms to explore the implicit information about research papers. We implemented and shown the result of text mining on review texts using R language. And we found that Zika virus was the research hotspot and association research methods were widely used in 2016. We also mined the news review about one paper and derived the public opinion.

Research of Patent Technology Trends in Textile Materials: Text Mining Methodology Using DETM & STM (섬유소재 분야 특허 기술 동향 분석: DETM & STM 텍스트마이닝 방법론 활용)

  • Lee, Hyun Sang;Jo, Bo Geun;Oh, Se Hwan;Ha, Sung Ho
    • The Journal of Information Systems
    • /
    • v.30 no.3
    • /
    • pp.201-216
    • /
    • 2021
  • Purpose The purpose of this study is to analyze the trend of patent technology in textile materials using text mining methodology based on Dynamic Embedded Topic Model and Structural Topic Model. It is expected that this study will have positive impact on revitalizing and developing textile materials industry as finding out technology trends. Design/methodology/approach The data used in this study is 866 domestic patent text data in textile material from 1974 to 2020. In order to analyze technology trends from various aspect, Dynamic Embedded Topic Model and Structural Topic Model mechanism were used. The word embedding technique used in DETM is the GloVe technique. For Stable learning of topic modeling, amortized variational inference was performed based on the Recurrent Neural Network. Findings As a result of this analysis, it was found that 'manufacture' topics had the largest share among the six topics. Keyword trend analysis found the fact that natural and nanotechnology have recently been attracting attention. The metadata analysis results showed that manufacture technologies could have a high probability of patent registration in entire time series, but the analysis results in recent years showed that the trend of elasticity and safety technology is increasing.

The Prediction of Cryptocurrency on Using Text Mining and Deep Learning Techniques : Comparison of Korean and USA Market (텍스트 마이닝과 딥러닝을 활용한 암호화폐 가격 예측 : 한국과 미국시장 비교)

  • Won, Jonggwan;Hong, Taeho
    • Knowledge Management Research
    • /
    • v.22 no.2
    • /
    • pp.1-17
    • /
    • 2021
  • In this study, we predicted the bitcoin prices of Bithum and Coinbase, a leading exchange in Korea and USA, using ARIMA and Recurrent Neural Networks(RNNs). And we used news articles from each country to suggest a separated RNN model. The suggested model identifies the datasets based on the changing trend of prices in the training data, and then applies time series prediction technique(RNNs) to create multiple models. Then we used daily news data to create a term-based dictionary for each trend change point. We explored trend change points in the test data using the daily news keyword data of testset and term-based dictionary, and apply a matching model to produce prediction results. With this approach we obtained higher accuracy than the model which predicted price by applying just time series prediction technique. This study presents that the limitations of the time series prediction techniques could be overcome by exploring trend change points using news data and various time series prediction techniques with text mining techniques could be applied to improve the performance of the model in the further research.

Korean Collective Intelligence in Sharing Economy Using R Programming: A Text Mining and Time Series Analysis Approach (R프로그래밍을 활용한 공유경제의 한국인 집단지성: 텍스트 마이닝 및 시계열 분석)

  • Kim, Jae Won;Yun, You Dong;Jung, Yu Jin;Kim, Ki Youn
    • Journal of Internet Computing and Services
    • /
    • v.17 no.5
    • /
    • pp.151-160
    • /
    • 2016
  • The purpose of this research is to investigate Korean popular attitudes and social perceptions of 'sharing economy' terminology at the current moment from a creative or socio-economic point of view. In Korea, this study discovers and interprets the objective and tangible annual changes and patterns of sociocultural collective intelligence that have taken place over the last five years by applying text mining in the big data analysis approach. By crawling and Googling, this study collected a significant amount of time series web meta-data with regard to the theme of the sharing economy on the world wide web from 2010 to 2014. Consequently, huge amounts of raw data concerning sharing economy are processed into the value-added meaningful 'word clouding' form of graphs or figures by using the function of word clouding with R programming. Till now, the lack of accumulated data or collective intelligence about sharing economy notwithstanding, it is worth nothing that this study carried out preliminary research on conducting a time-series big data analysis from the perspective of knowledge management and processing. Thus, the results of this study can be utilized as fundamental data to help understand the academic and industrial aspects of future sharing economy-related markets or consumer behavior.

Time-Series based Dataset Selection Method for Effective Text Classification (효율적인 문헌 분류를 위한 시계열 기반 데이터 집합 선정 기법)

  • Chae, Yeonghun;Jeong, Do-Heon
    • The Journal of the Korea Contents Association
    • /
    • v.17 no.1
    • /
    • pp.39-49
    • /
    • 2017
  • As the Internet technology advances, data on the web is increasing sharply. Many research study about incremental learning for classifying effectively in data increasing. Web document contains the time-series data such as published date. If we reflect time-series data to classification, it will be an effective classification. In this study, we analyze the time-series variation of the words. We propose an efficient classification through dividing the dataset based on the analysis of time-series information. For experiment, we corrected 1 million online news articles including time-series information. We divide the dataset and classify the dataset using SVM and $Na{\ddot{i}}ve$ Bayes. In each model, we show that classification performance is increasing. Through this study, we showed that reflecting time-series information can improve the classification performance.

A Study on the Potential and Limitation of Pre-producing Dramas through Social Analysis -focusing on a jtbc drama - (소셜 분석을 통한 사전제작 드라마의 가능성과 한계에 관한 연구 -jtbc <맨투맨>을 중심으로-)

  • Kim, Kyung-Ae;Ku, Jin-Hee
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.19 no.2
    • /
    • pp.164-172
    • /
    • 2018
  • This paper examines the relevance of pre-production and storytelling in big data analysis and, focusing on JTBC's Man to Man series, looks at how the drama's storytelling should be structured. In this study, we conducted text mining on blogs focused on a particular topic to read the viewer's thoughts on pre-produced dramas and on 67 blogs written about Pre-Production Dramas from 2016.12.15 to 2017.12.15. Also, we conducted sentiment analysis about the Man to Man series, which is not only a pre-production drama, but also has storytelling issues. The blog text extraction and text mining were analyzed using the OutWit Hub and the R, and the tools.provided by social metrics were used to make sentiment analyses of the larger data. Sentiment analysis revealed that the viewers of the Man to Man series did not agree with the romance between Kim Sul-woo and Cha Do-ha, due to the lack of reality in the female characters. Therefore, it was concluded that it is crucial to increase the reality of the characters in order to increase the audience's empathy. These studies will continue to be necessary, because they will form the basis for digitally driven storytelling studies and will provide valuable materials for conducting predictions and instructions in the cultural content industry.

A study on detective story authors' style differentiation and style structure based on Text Mining (텍스트 마이닝 기법을 활용한 고전 추리 소설 작가 간 문체적 차이와 문체 구조에 대한 연구)

  • Moon, Seok Hyung;Kang, Juyoung
    • Journal of Intelligence and Information Systems
    • /
    • v.25 no.3
    • /
    • pp.89-115
    • /
    • 2019
  • This study was conducted to present the stylistic differences between Arthur Conan Doyle and Agatha Christie, famous as writers of classical mystery novels, through data analysis, and further to present the analytical methodology of the study of style based on text mining. The reason why we chose mystery novels for our research is because the unique devices that exist in classical mystery novels have strong stylistic characteristics, and furthermore, by choosing Arthur Conan Doyle and Agatha Christie, who are also famous to the general reader, as subjects of analysis, so that people who are unfamiliar with the research can be familiar with them. The primary objective of this study is to identify how the differences exist within the text and to interpret the effects of these differences on the reader. Accordingly, in addition to events and characters, which are key elements of mystery novels, the writer's grammatical style of writing was defined in style and attempted to analyze it. Two series and four books were selected by each writer, and the text was divided into sentences to secure data. After measuring and granting the emotional score according to each sentence, the emotions of the page progress were visualized as a graph, and the trend of the event progress in the novel was identified under eight themes by applying Topic modeling according to the page. By organizing co-occurrence matrices and performing network analysis, we were able to visually see changes in relationships between people as events progressed. In addition, the entire sentence was divided into a grammatical system based on a total of six types of writing style to identify differences between writers and between works. This enabled us to identify not only the general grammatical writing style of the author, but also the inherent stylistic characteristics in their unconsciousness, and to interpret the effects of these characteristics on the reader. This series of research processes can help to understand the context of the entire text based on a defined understanding of the style, and furthermore, by integrating previously individually conducted stylistic studies. This prior understanding can also contribute to discovering and clarifying the existence of text in unstructured data, including online text. This could help enable more accurate recognition of emotions and delivery of commands on an interactive artificial intelligence platform that currently converts voice into natural language. In the face of increasing attempts to analyze online texts, including New Media, in many ways and discover social phenomena and managerial values, it is expected to contribute to more meaningful online text analysis and semantic interpretation through the links to these studies. However, the fact that the analysis data used in this study are two or four books by author can be considered as a limitation in that the data analysis was not attempted in sufficient quantities. The application of the writing characteristics applied to the Korean text even though it was an English text also could be limitation. The more diverse stylistic characteristics were limited to six, and the less likely interpretation was also considered as a limitation. In addition, it is also regrettable that the research was conducted by analyzing classical mystery novels rather than text that is commonly used today, and that various classical mystery novel writers were not compared. Subsequent research will attempt to increase the diversity of interpretations by taking into account a wider variety of grammatical systems and stylistic structures and will also be applied to the current frequently used online text analysis to assess the potential for interpretation. It is expected that this will enable the interpretation and definition of the specific structure of the style and that various usability can be considered.