• Title/Summary/Keyword: Text network

Search Result 1,135, Processing Time 0.028 seconds

A Time Series Analysis of Urban Park Behavior Using Big Data (빅데이터를 활용한 도시공원 이용행태 특성의 시계열 분석)

  • Woo, Kyung-Sook;Suh, Joo-Hwan
    • Journal of the Korean Institute of Landscape Architecture
    • /
    • v.48 no.1
    • /
    • pp.35-45
    • /
    • 2020
  • This study focused on the park as a space to support the behavior of urban citizens in modern society. Modern city parks are not spaces that play a specific role but are used by many people, so their function and meaning may change depending on the user's behavior. In addition, current online data may determine the selection of parks to visit or the usage of parks. Therefore, this study analyzed the change of behavior in Yeouido Park, Yeouido Hangang Park, and Yangjae Citizen's Forest from 2000 to 2018 by utilizing a time series analysis. The analysis method used Big Data techniques such as text mining and social network analysis. The summary of the study is as follows. The usage behavior of Yeouido Park has changed over time to "Ride" (Dynamic Behavior) for the first period (I), "Take" (Information Communication Service Behavior) for the second period (II), "See" (Communicative Behavior) for the third period (III), and "Eat" (Energy Source Behavior) for the fourth period (IV). In the case of Yangjae Citizens' Forest, the usage behavior has changed over time to "Walk" (Dynamic Behavior) for the first, second, and third periods (I), (II), (III) and "Play" (Dynamic Behavior) for the fourth period (IV). Looking at the factors affecting behavior, Yeouido Park was had various factors related to sports, leisure, culture, art, and spare time compared to Yangjae Citizens' Forest. The differences in Yangjae Citizens' Forest that affected its main usage behavior were various elements of natural resources. Second, the behavior of the target areas was found to be focused on certain main behaviors over time and played a role in selecting or limiting future behaviors. These results indicate that the space and facilities of the target areas had not been utilized evenly, as various behaviors have not occurred, however, a certain main behavior has appeared in the target areas. This study has great significance in that it analyzes the usage of urban parks using Big Data techniques, and determined that urban parks are transformed into play spaces where consumption progressed beyond the role of rest and walking. The behavior occurring in modern urban parks is changing in quantity and content. Therefore, through various types of discussions based on the results of the behavior collected through Big Data, we can better understand how citizens are using city parks. This study found that the behavior associated with static behavior in both parks had a great impact on other behaviors.

Analysis of media trends related to spent nuclear fuel treatment technology using text mining techniques (텍스트마이닝 기법을 활용한 사용후핵연료 건식처리기술 관련 언론 동향 분석)

  • Jeong, Ji-Song;Kim, Ho-Dong
    • Journal of Intelligence and Information Systems
    • /
    • v.27 no.2
    • /
    • pp.33-54
    • /
    • 2021
  • With the fourth industrial revolution and the arrival of the New Normal era due to Corona, the importance of Non-contact technologies such as artificial intelligence and big data research has been increasing. Convergent research is being conducted in earnest to keep up with these research trends, but not many studies have been conducted in the area of nuclear research using artificial intelligence and big data-related technologies such as natural language processing and text mining analysis. This study was conducted to confirm the applicability of data science analysis techniques to the field of nuclear research. Furthermore, the study of identifying trends in nuclear spent fuel recognition is critical in terms of being able to determine directions to nuclear industry policies and respond in advance to changes in industrial policies. For those reasons, this study conducted a media trend analysis of pyroprocessing, a spent nuclear fuel treatment technology. We objectively analyze changes in media perception of spent nuclear fuel dry treatment techniques by applying text mining analysis techniques. Text data specializing in Naver's web news articles, including the keywords "Pyroprocessing" and "Sodium Cooled Reactor," were collected through Python code to identify changes in perception over time. The analysis period was set from 2007 to 2020, when the first article was published, and detailed and multi-layered analysis of text data was carried out through analysis methods such as word cloud writing based on frequency analysis, TF-IDF and degree centrality calculation. Analysis of the frequency of the keyword showed that there was a change in media perception of spent nuclear fuel dry treatment technology in the mid-2010s, which was influenced by the Gyeongju earthquake in 2016 and the implementation of the new government's energy conversion policy in 2017. Therefore, trend analysis was conducted based on the corresponding time period, and word frequency analysis, TF-IDF, degree centrality values, and semantic network graphs were derived. Studies show that before the 2010s, media perception of spent nuclear fuel dry treatment technology was diplomatic and positive. However, over time, the frequency of keywords such as "safety", "reexamination", "disposal", and "disassembly" has increased, indicating that the sustainability of spent nuclear fuel dry treatment technology is being seriously considered. It was confirmed that social awareness also changed as spent nuclear fuel dry treatment technology, which was recognized as a political and diplomatic technology, became ambiguous due to changes in domestic policy. This means that domestic policy changes such as nuclear power policy have a greater impact on media perceptions than issues of "spent nuclear fuel processing technology" itself. This seems to be because nuclear policy is a socially more discussed and public-friendly topic than spent nuclear fuel. Therefore, in order to improve social awareness of spent nuclear fuel processing technology, it would be necessary to provide sufficient information about this, and linking it to nuclear policy issues would also be a good idea. In addition, the study highlighted the importance of social science research in nuclear power. It is necessary to apply the social sciences sector widely to the nuclear engineering sector, and considering national policy changes, we could confirm that the nuclear industry would be sustainable. However, this study has limitations that it has applied big data analysis methods only to detailed research areas such as "Pyroprocessing," a spent nuclear fuel dry processing technology. Furthermore, there was no clear basis for the cause of the change in social perception, and only news articles were analyzed to determine social perception. Considering future comments, it is expected that more reliable results will be produced and efficiently used in the field of nuclear policy research if a media trend analysis study on nuclear power is conducted. Recently, the development of uncontact-related technologies such as artificial intelligence and big data research is accelerating in the wake of the recent arrival of the New Normal era caused by corona. Convergence research is being conducted in earnest in various research fields to follow these research trends, but not many studies have been conducted in the nuclear field with artificial intelligence and big data-related technologies such as natural language processing and text mining analysis. The academic significance of this study is that it was possible to confirm the applicability of data science analysis technology in the field of nuclear research. Furthermore, due to the impact of current government energy policies such as nuclear power plant reductions, re-evaluation of spent fuel treatment technology research is undertaken, and key keyword analysis in the field can contribute to future research orientation. It is important to consider the views of others outside, not just the safety technology and engineering integrity of nuclear power, and further reconsider whether it is appropriate to discuss nuclear engineering technology internally. In addition, if multidisciplinary research on nuclear power is carried out, reasonable alternatives can be prepared to maintain the nuclear industry.

Topic Modeling based Interdisciplinarity Measurement in the Informatics Related Journals (토픽 모델링 기반 정보학 분야 학술지의 학제성 측정 연구)

  • Jin, Seol A;Song, Min
    • Journal of the Korean Society for information Management
    • /
    • v.33 no.1
    • /
    • pp.7-32
    • /
    • 2016
  • This study has measured interdisciplinarity using a topic modeling, which automatically extracts sub-topics based on term information appeared in documents group unlike the traditional top-down approach employing the references and classification system as a basis. We used titles and abstracts of the articles published in top 20 journals for the past five years by the 5-year impact factor under the category of 'Information & Library Science' in JCR 2013. We applied 'Discipline Diversity' and 'Network Coherence' as factors in measuring interdisciplinarity; 'Shannon Entropy Index' and 'Stirling Diversity Index' were used as indices to gauge diversity of fields while topic network's average path length was employed as an index representing network cohesion. After classifying the types of interdisciplinarity with the diversity and cohesion indices produced, we compared the topic networks of journals that represent each type. As a result, we found that the text-based diversity index showed different ranking when compared to the reference-based diversity index. This signifies that those two indices can be utilized complimentarily. It was also confirmed that the characteristics and interconnectedness of the sub-topics dealt with in each journal can be intuitively understood through the topic networks classified by considering both the diversity and cohesion. In conclusion, the topic modeling-based measurement of interdisciplinarity that this study proposed was confirmed to be applicable serving multiple roles in showing the interdisciplinarity of the journals.

Analysis of Waterpark Status and Recognition Using Big Data Analysis (빅데이터 분석을 활용한 워터파크 현황 및 인식 분석)

  • Kim, Jae-Hwan;Lee, Jae-Moon
    • Journal of Digital Convergence
    • /
    • v.15 no.10
    • /
    • pp.525-535
    • /
    • 2017
  • The purpose of this study aims to examine consumer perception and current status of water park. The Naver and Daum were used for data collection channels and the keyword 'water park' was used for data retrieval. The data analysis period was limited to the study period from January 1, 2015 to December 31, 2016 for a total of two years. First, as a result of the frequency analysis, hidden cameras, Lotte water park, arrests, suspects, gimhae were in top 5 in 2015, Lotte water park, swimming, summer, opening, admission ticket were in top 5 in 2016. Second, as a result of the connection degree central analysis, hidden camera, arrest, suspect, female, shower room were in top 5 in 2015, swimming, Lotte water park, summer and One Mount, admission ticket were in top 5 in 2016. Third, as a result of the N-GRAM network graph, the water park/hidden camera, the hidden camera/hidden camera, the suspect/arrest, the Gimhae/Lotte water park, water park/suspect were in top 5 in 2015, and One Mount/water park, Gimhae/Lotte water park, water park/admission ticket, water park/water park, water park/opening were in top 5 in 2016. Fourth, as a result of the CONCOR analysis, three groups in 2015 and two groups in 2016 were formed.

An Improved License Plate Recognition Technique in Outdoor Image (옥외영상의 개선된 차량번호판 인식기술)

  • Kim, Byeong-jun;Kim, Dong-hoon;Lee, Joonwhoan
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.26 no.5
    • /
    • pp.423-431
    • /
    • 2016
  • In general LPR(License Plate Recognition) in outdoor image is not so simple differently from in the image captured from manmade environment, because of geometric shape distortion and large illumination changes. this paper proposes three techniques for LPR in outdoor images captured from CCTV. At first, a serially connected multi-stage Adaboost LP detector is proposed, in which different complementary features are used. In the proposed detector the performance is increased by the Haar-like Adaboost LP detector consecutively connected to the MB-LBP based one in serial manner. In addition the technique is proposed that makes image processing easy by the prior determination of LP type, after correction of geometric distortion of LP image. The technique is more efficient than the processing the whole LP image without knowledge of LP type in that we can take the appropriate color to gray conversion, accurate location for separation of text/numeric character sub-images, and proper parameter selection for image processing. In the proposed technique we use DBN(Deep Belief Network) to achieve a robust character recognition against stroke loss and geometric distortion like slant due to the incomplete image processing.

A discourse analysis for Korean women's leisure culture from 1960s to the present - Application of semantic network analysis (현대 한국 여성의 여가문화에 대한 담론 변화 연구 - 1960-2010년대 신문 기사의 의미연결망 분석을 중심으로 -)

  • Cha, Min-Kyung
    • Review of Culture and Economy
    • /
    • v.21 no.2
    • /
    • pp.197-229
    • /
    • 2018
  • This study investigates the social discourse for Korean women's leisure culture and analyzes the conflicts between the ideologies which affected to the women's leisure issues with the social and cultural context. For this purpose, this study analyzed a sum of 652,513 words of 4,614 news articles about Korean women's leisure by applying semantic network analysis. In the 1960s, both the enthusiasm for 'modernization' and 'good wife and wise mother' ideologies were simultaneously affected to women's leisure discourse. 'The good wife and wise mother' ideology have a stronger impact on women's leisure culture in the 1970s. In the 1980s, even though the Korean women had higher education background and advanced social status compared to the former periods, both 'good wife and wise mother' ideology and 'modern career women' ideology conflicted each other. The conflicts between the two ideologies were intensified in the 1990s and the women tended to sacrifice their leisure in the course of the ideological conflicts in the 2000s. In the 2010s, women who exhausted due to the intensified conflicts between the two ideologies showed preference for passive forms of leisure.

A Network Analysis on the Trend of Pressing Dementia Management Policy: Focusing on the Prevention of Dementia (치매관리정책의 언론보도 경향에 대한 네트워크 분석: 치매예방을 중심으로)

  • Choi, In-Kyu;Suh, Kyung-Do;Kim, Duck-Hwan;Choi, Ju-Keun
    • Journal of Digital Convergence
    • /
    • v.16 no.11
    • /
    • pp.149-157
    • /
    • 2018
  • The purpose of this study is to identify the tendency of media reports on the dementia management policy in Korea and to suggest policy implications such as prevention of dementia, improvement of awareness, and management of dementia through network analysis. We analyzed the linkage structure between the main texts centered on the number of citations of the main language related to the dementia management policy and the centrality and mediation as the research procedures and methods. As a result of the analysis, first, a 'micro' perspective is needed to explain practically. Second, it is desirable to understand the dementia management policy in the context of community. Third, the network structure of key words such as 'dementia management policy' suggests the possibility of research study in academic research in future research. Therefore, the phenomenon of dementia management policy will contribute to the direction of future dementia management policy, not local or temporary.

The Analysis of Fashion Trend Cycle using Big Data (패션 트렌드의 주기적 순환성에 관한 빅데이터 융합 분석)

  • Kim, Ki-Hyun;Byun, Hae-Won
    • Journal of the Korea Convergence Society
    • /
    • v.11 no.12
    • /
    • pp.113-123
    • /
    • 2020
  • In this paper, big data analysis was conducted for past and present fashion trends and fashion cycle. We focused on daily look for ordinary people instead of the fashion professionals and fashion show. Using the social matrix tool, Textom, we performed frequency analysis, N-gram analysis, network analysis and structural equivalence analysis on the big data containing fashion trends and cycles. The results are as follows. First, this study extracted the major key words related to fashion trends for the daily look from the past(1980s, 1990s) and the present(2019 and 2020). Second, the frequence analysis and N-gram analysis showed that the fashion cycle has shorten to 30-40 years. Third, the structural equivalence analysis found the four representative clusters. The past four clusters are jean, retro codi, athleisure look, celebrity retro and the present clusters are retro, newtro, lady chic, retro futurism. Fourth, through the network analysis and N-gram analysis, it turned out that the past fashion is reproduced and evolves to the current fashion with certain reasoning.

Research Trends and Knowledge Structure of Digital Transformation in Fashion (패션 영역에서 디지털 전환 관련 연구동향 및 지식구조)

  • Choi, Yeong-Hyeon;Jeong, Jinha;Lee, Kyu-Hye
    • Journal of Digital Convergence
    • /
    • v.19 no.3
    • /
    • pp.319-329
    • /
    • 2021
  • This study aims to investigate Korean fashion-related research trends and knowledge structures on digital transformation through information-based approaches. Accordingly, we first identified the current status of the relevant research in Korean academic literature by year and journal; subsequently, we derived key research topics through network analysis, and then analyzed major research trends and knowledge structures by time. From 2010 to 2020, we collected 159 studies published on Korean academic platforms, cleansed data through Python 3.7, and measured centrality and network implementation through NodeXL 1.0.1. The results are as follows: first, related research has been actively conducted since 2016, mainly concentrated in clothing and art areas. Second, the online platform, AR/VR, appeared as the most frequently mentioned topic, and consumer psychological analysis, marketing strategy suggestion, and case analysis were used as the main research methods. Through clustering, major research contents for each sub-major of clothing were derived. Third, major subject by period was considered, which has, over time, changed from consumer-centered research to strategy suggestion, and design development research of platforms or services. This study contributes to enhancing insight into the fashion field on digital transformation, and can be used as a basic research to design research on related topics.

Development of an intelligent skin condition diagnosis information system based on social media

  • Kim, Hyung-Hoon;Ohk, Seung-Ho
    • Journal of the Korea Society of Computer and Information
    • /
    • v.27 no.8
    • /
    • pp.241-251
    • /
    • 2022
  • Diagnosis and management of customer's skin condition is an important essential function in the cosmetics and beauty industry. As the social media environment spreads and generalizes to all fields of society, the interaction of questions and answers to various and delicate concerns and requirements regarding the diagnosis and management of skin conditions is being actively dealt with in the social media community. However, since social media information is very diverse and atypical big data, an intelligent skin condition diagnosis system that combines appropriate skin condition information analysis and artificial intelligence technology is necessary. In this paper, we developed the skin condition diagnosis system SCDIS to intelligently diagnose and manage the skin condition of customers by processing the text analysis information of social media into learning data. In SCDIS, an artificial neural network model, AnnTFIDF, that automatically diagnoses skin condition types using artificial neural network technology, a deep learning machine learning method, was built up and used. The performance of the artificial neural network model AnnTFIDF was analyzed using test sample data, and the accuracy of the skin condition type diagnosis prediction value showed a high performance of about 95%. Through the experimental and performance analysis results of this paper, SCDIS can be evaluated as an intelligent tool that can be used efficiently in the skin condition analysis and diagnosis management process in the cosmetic and beauty industry. And this study can be used as a basic research to solve the new technology trend, customized cosmetics manufacturing and consumer-oriented beauty industry technology demand.