• Title/Summary/Keyword: Text mining analysis

Search Result 1,222, Processing Time 0.033 seconds

Text-Mining Analysis of Korea Government R&D Trends in Construction Machinery Domains (텍스트 마이닝을 통한 건설기계분야 국내 정부 R&D 연구동향 분석)

  • Bom Yun;Joonsoo Bae
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.46 no.spc
    • /
    • pp.1-8
    • /
    • 2023
  • To investigate the national science and technology policy direction in the field of construction machinery, an analysis was conducted on projects selected as national research and development (R&D) initiatives by the government. Assuming that the project titles contain key keywords, text mining was employed to substantiate this assumption. Project information data spanning nine years from 2014 to 2022 was collected through the National Science & Technology Information Service (NTIS). To observe changes over time, the years were divided into three-year sections. To analyze research trends efficiently, keywords were categorized into groups: 'equipment,' 'smart,' and 'eco-friendly.' Based on the collected data, keyword frequency analysis, N-gram analysis, and topic modeling were performed. The research findings indicate that domestic government R&D in the construction machinery field primarily focuses on smart-related research and development. Specifically, investments in monitoring systems and autonomous operation technologies are increasing. This study holds significance in analyzing objective research trends through the utilization of big data analysis techniques and is expected to contribute to future research and development planning, strategic formulation, and project management.

On the Development of Risk Factor Map for Accident Analysis using Textmining and Self-Organizing Map(SOM) Algorithms (재해분석을 위한 텍스트마이닝과 SOM 기반 위험요인지도 개발)

  • Kang, Sungsik;Suh, Yongyoon
    • Journal of the Korean Society of Safety
    • /
    • v.33 no.6
    • /
    • pp.77-84
    • /
    • 2018
  • Report documents of industrial and occupational accidents have continuously been accumulated in private and public institutes. Amongst others, information on narrative-texts of accidents such as accident processes and risk factors contained in disaster report documents is gaining the useful value for accident analysis. Despite this increasingly potential value of analysis of text information, scientific and algorithmic text analytics for safety management has not been carried out yet. Thus, this study aims to develop data processing and visualization techniques that provide a systematic and structural view of text information contained in a disaster report document so that safety managers can effectively analyze accident risk factors. To this end, the risk factor map using text mining and self-organizing map is developed. Text mining is firstly used to extract risk keywords from disaster report documents and then, the Self-Organizing Map (SOM) algorithm is conducted to visualize the risk factor map based on the similarity of disaster report documents. As a result, it is expected that fruitful text information buried in a myriad of disaster report documents is analyzed, providing risk factors to safety managers.

A Study of Consumer Perception on Freediving Suits Utilizing Big Data Analysis (빅데이터 분석을 활용한 프리다이빙 슈트에 대한 소비자 인식 연구)

  • Ji-Eun Kim;Eunyoung Lee
    • Journal of the Korea Fashion and Costume Design Association
    • /
    • v.26 no.2
    • /
    • pp.87-99
    • /
    • 2024
  • Freediving, an underwater leisure sport that involves diving without the use of a breathing apparatus, has gained popularity among younger demographics through the viral spread of images and videos on social media platforms. This study employs prominent Big Data analysis techniques, including text mining, Latent Dirichlet Allocation (LDA) topic analysis, and opinion mining to explore the keywords associated with freediving suits over the past five years. The research aims to analyze the rapidly evolving market trends of freediving suits and the increasingly complex and diverse consumer perceptions to provide foundational data for activating the freediving suit market and developing strategies for sustained growth. The study identified the keyword 'size' related to freediving suits and conducted opinion mining on 'freediving suit sizes'. Although the results showed a higher positive than negative sentiment, negative keywords were also extracted, indicating the need to understand and mitigate the negative factors associated with 'size'. The findings offer vital guidelines for the advancement of the freediving suit market and enhancing consumer satisfaction. This study is important as it contributes foundational data for continuous growth strategies of the freediving suit market.

Lexical and Phrasal Analysis of Online Discourse of Type 2 Diabetes Patients based on Text-Mining (텍스트마이닝 기법을 이용한 제 2형 당뇨환자 온라인 담론의 어휘 및 구문구조 분석)

  • Hwang, Moonl-Hyon;Park, Jungsik
    • Journal of Digital Convergence
    • /
    • v.12 no.6
    • /
    • pp.655-667
    • /
    • 2014
  • This paper has identified five major categories of the T2D patients' concerns based on an online forum where the patients voluntarily verbalized their naturally occurring emotional reactions and concerns related to T2D. We have emphasized the fact that the lexical and phrasal analysis brought to the forefront the prevailing negative reactions and desires for clear information, professional advice, and emotional support. This study used lexical and phrasal analysis based on text-mining tools to estimate the potential of using a large sample of patient conversation of a specific disease posted on the internet for clinical features and patients' emotions. As a result, the study showed that quantitative analysis based on text-mining is a viable method of generalizing the psychological concerns and features of T2D patients.

Research Trend Analysis on Living Lab Using Text Mining (텍스트 마이닝을 이용한 리빙랩 연구동향 분석)

  • Kim, SeongMook;Kim, YoungJun
    • Journal of Digital Convergence
    • /
    • v.18 no.8
    • /
    • pp.37-48
    • /
    • 2020
  • This study aimed at understanding trends of living lab studies and deriving implications for directions of the studies by utilizing text mining. The study included network analysis and topic modelling based on keywords and abstracts from total 166 thesis published between 2011 and November 2019. Centrality analysis showed that living lab studies had been conducted focusing on keywords like innovation, society, technology, development, user and so on. From the topic modelling, 5 topics such as "regional innovation and user support", "social policy program of government", "smart city platform building", "technology innovation model of company" and "participation in system transformation" were extracted. Since the foundation of KNoLL in 2017, the diversification of living lab study subjects has been made. Quantitative analysis using text mining provides useful results for development of living lab studies.

Analysis of Research Trends Using Text Mining (텍스트 마이닝을 활용한 연구 동향 분석)

  • Shim, Jaekwoun
    • Journal of Creative Information Culture
    • /
    • v.6 no.1
    • /
    • pp.23-30
    • /
    • 2020
  • This study used the text mining method to analyze the research trend of the Journal of Creative Information Culture(JCIC) which is the journal of convergence. The existing research trend analysis method has a limitation in that the researcher's personality is reflected using the traditional content analysis method. In order to complement the limitations of existing research trend analysis, this study used topic modeling. The English abstract of the paper was analyzed from 2015 to 2019 of the JCIC. As a result, the word that appeared most in the JCIC was "education," and eight research topics were drawn. The derived subjects were analyzed by educational subject, educational evaluation, learner's competence, software education and maker culture, information education and computer education, future education, creativity, teaching and learning methods. This study is meaningful in that it analyzes the research trend of the JCIC using text mining.

Exploration of Emotional Labor Research Trends in Korea through Keyword Network Analysis (주제어 네트워크 분석(network analysis)을 통한 국내 감정노동의 연구동향 탐색)

  • Lee, Namyeon;Kim, Joon-Hwan;Mun, Hyung-Jin
    • Journal of Convergence for Information Technology
    • /
    • v.9 no.3
    • /
    • pp.68-74
    • /
    • 2019
  • The purpose of this study was to identify research trends of 892 domestic articles (2009-2018) related to emotional labor by using text-mining and network analysis. To this end, the keyword of these papers were collected and coded and eventually converted to 871 nodes and 2625 links for network text analysis. First, network text analysis revealed that the top four main keyword, according to co-occurrence frequency, were burnout, turnover intention, job stress, and job satisfaction in order and that the frequency and the top four core keyword by degree centrality were all relatively the high. Second, based on the top four core keyword of degree centrality the ego network analysis was conducted and the keyword for connection centroid of each network were presented.

Analysis of English abstracts in Journal of the Korean Data & Information Science Society using topic models and social network analysis (토픽 모형 및 사회연결망 분석을 이용한 한국데이터정보과학회지 영문초록 분석)

  • Kim, Gyuha;Park, Cheolyong
    • Journal of the Korean Data and Information Science Society
    • /
    • v.26 no.1
    • /
    • pp.151-159
    • /
    • 2015
  • This article analyzes English abstracts of the articles published in Journal of the Korean Data & Information Science Society using text mining techniques. At first, term-document matrices are formed by various methods and then visualized by social network analysis. LDA (latent Dirichlet allocation) and CTM (correlated topic model) are also employed in order to extract topics from the abstracts. Performances of the topic models are compared via entropy for several numbers of topics and weighting methods to form term-document matrices.

Text Mining and Network Analysis of News Articles for Deriving Socio-Economic Damage Types of Heat Wave Events in Korea: 2012~2016 Cases (뉴스 기사 텍스트 마이닝과 네트워크 분석을 통한 폭염의 사회·경제적 영향 유형 도출: 2012~2016년 사례)

  • Jung, Jae In;Lee, Kyoungjun;Kim, Seungbum
    • Atmosphere
    • /
    • v.30 no.3
    • /
    • pp.237-248
    • /
    • 2020
  • In order to effectively prepare for damage caused by weather events, it is important to proactively identify the possible impacts of weather phenomena on the domestic society and economy. Text mining and Network analysis are used in this paper to build a database of damage types and levels caused by heat wave. We collect news articles about heat wave from the SBS news website and determine the primary and secondary effects of that through network analysis. In addition to that, based on the frequency with which each impact keyword is mentioned, we estimate how much influence each factor has. As a result, the types of impacts caused by heat wave are efficiently derived. Among these types of impacts, we find that people in South Korea are mainly interested in algae and heat-related illness. Since this technique of analysis can be applied not only to news articles but also to social media contents, such as Twitter and Facebook, it is expected to be used as a useful tool for building weather impact databases.

Prediction of Physical Examination Demand Using Text Mining (텍스트 마이닝을 이용한 건강검진 수요 예측)

  • Park, Kyungbo;Kim, Mi Ryang
    • Journal of Information Technology Services
    • /
    • v.21 no.5
    • /
    • pp.95-106
    • /
    • 2022
  • Recently, physical examinations have become an important strategy to reduce costs for individuals and society. Pre-physical counseling is important for an effective physical examination. However, incomplete counseling is being conducted because the demand for physical examinations is not predicted. Therefore, in this study, the demand for physical examination was predicted using text mining and stepwise regression. As a result of the analysis, the most recent text data showed a high explanatory power of the demand for physical examination. Also, large amounts of data have high explanatory power. In addition, it was found that the high frequency of the text "health food" reduces the number of health examination customers. And the higher the frequency of the text of the word "food", the lower the number of physical examination customers. However, when the word "wild ginseng" was exposed a lot on Twitter, the number of physical examination customers visiting hospitals increased. In other words, customers consume efficiently by comparing the health examination price with the price of consumer goods. The proposed research framework can help predict demand in other industries.