This study presents a recently obtained social media data set based upon the case study of Electric Vehicles (EV) and looks to implement a sentiment analysis (SA) in order to gain insights. This study uses two methods in order to fully analyze the public's sentiment on EVs. First, we implement a SA tool in which we used to extract the sentiment of comments. Next we labeled the data with these sentiments obtained and classified them. While performing classification we found the problem of dimensionality and also explored the use of feature selection (FS) models in order to reduce the data set's dimensionality. We found that the use of three FS models (Chi Squared, Information Gain and ReliefF) showed the most promising results when used alongside a logistic and support vector machines classification algorithm. the contributions of this paper are in providing an real-world example of social media text analytics which can be adopted in many other areas of research and business. Moving forward researchers can use the methodological approach in this paper to further refine and improve their own case uses in text analytics.
As the amount of users and data of NS explosively increased, research based on SNS Big data became active. In social mining, Latent Dirichlet Allocation(LDA), which is a typical topic model technique, is used to identify the similarity of each text from non-classified large-volume SNS text big data and to extract trends therefrom. However, LDA has the limitation that it is difficult to deduce a high-level topic due to the semantic sparsity of non-frequent word occurrence in the short sentence data. The BTM study improved the limitations of this LDA through a combination of two words. However, BTM also has a limitation that it is impossible to calculate the weight considering the relation with each subject because it is influenced more by the high frequency word among the combined words. In this paper, we propose a technique to improve the accuracy of existing BTM by reflecting semantic relation between words.
Researchers have increased their interest in effectively managing the disaster that appear in large scale and complex form. There are two types of disaster information, which are unstructured text data and structured data. Unstructured text data usually refers to text documents that have been referenced by disaster management personnel such as disaster manuals and related regulations, while structured data refers to various disaster information build in the disaster related organization system. This paper proposes a methodology of constructing a disaster information sharing system that enables joint use of disaster related organizations through the establishment of a mutual linkage system by utilizing both unstructured and structured form of disaster information. Especially, Based on the linkage information between structured earthquake information in earthquake related system and earthquake manuals and countermeasures against earthquake disaster, we propose a service that provides the necessary information for earthquake management. It is expected that the task manager will perform effective earthquake state management by acquiring the integrated structured and unstructured earthquake information of the ministries and related organizations.
There is increasing interest in text analysis based on unstructured data such as articles and comments, questions and answers. This is because they can be used to identify, evaluate, predict, and recommend features from unstructured text data, which is the opinion of people. The same holds true for TEL, where the MOOC service has evolved to automate debating, questioning and answering services based on the teaching-learning support system in order to generate question topics and to automatically classify the topics relevant to new questions based on question and answer data accumulated in the system. Therefore, in this study, we propose topic modeling using LDA to automatically classify new query topics. The proposed method enables the generation of a dictionary of question topics and the automatic classification of topics relevant to new questions. Experimentation showed high automatic classification of over 0.7 in some queries. The more new queries were included in the various topics, the better the automatic classification results.
Park, Seong-Hyun;Kim, Jae-Woong;Kim, Dong-Hyun;Cho, Han-Jin
Journal of the Korea Convergence Society
/
v.10
no.8
/
pp.15-20
/
2019
Music therapy has shown many benefits in the treatment of disabled children and the mind. Today's music therapy system is a situation where no specific treatment system has been built. In order for the music therapist to make an accurate treatment, various music therapy cases and treatment history data must be analyzed. Although the most appropriate treatment is given to the client or patient, in reality a number of difficulties are followed due to several factors. In this paper, we propose a music therapy knowledge management model which convergence the existing therapy data and text mining technology. By using the proposed model, similar cases can be searched and accurate and effective treatment can be made for the patient or the client based on specific and reliable data related to the patient. This can be expected to bring out the original purpose of the music therapy and its effect to the maximum, and is expected to be useful for treating more patients.
The Journal of Korea Institute of Information, Electronics, and Communication Technology
/
v.15
no.2
/
pp.79-88
/
2022
Social media big data includes a lot of information that can identify not only consumer consumption patterns but also local images. This paper was collected annually data including 'Samcheok' from 2015 to 2019 from Blog and Cafe of Naver and Daum in domestic portal site, and analyzed the regional image change after refining keyword which forms the regional image by performing text mining and network analysis. According to the research results, the regional image of 2015 was expressed with image cognitive elements of the nearby place name or place etc. such as 'Jangho Port', 'Donghae', and 'Beach'. However the regional image both 2016 and 2019 were changed with image cognitive elements of 'SamcheokSolbich' which is a special place within region. Therefore as the keywords related to the local image include 'Jangho Port' and Resort, which are the representative attractions of Samcheok, it can be seen that the infrastructure factor plays a big role in forming the local image. The significance test for the network data used the bootstrap technique, and the p-values in 2015, 2016, and 2019 were 0.0002, 0.0006, and 0.0002, respectively, which were found to be statistically significant at the significance level of 5%.
This study conducted a big data analysis study through text mining and semantic network analysis to explore the perception of defense reform 2.0. The collected data were analyzed with the top 70 keywords as the appropriate range for network visualization. Through word frequency analysis, connection centrality analysis, and an N-gram analysis, we identified issues that received much attention such as troop reduction, shortening of military service period, dismantling of the border area unit, and returning wartime operational control. In particular, the results of clustering words through CONCOR analysis showed that there was a great interest in pursuing the technical group, concerns about military capacity reduction, and reorganization of manpower structure. The results of the analysis through text mining techniques are as follows. First, it was found that there was a lack of awareness about measures to reinforce the reduced troops while receiving much attention to the reduction of troops in Defense Reform 2.0. Second, it was found that it is necessary to actively communicate with the local community due to the deconstruction and movement of the border area units, such as the decrease of the population of the region and the collapse of the local commercial area. Third, it was judged that it is necessary to show substantial results through the promotion of barracks culture and the defense industry, which showed that there was less interest than military structure and defense operation from the people and the introduction of active policies. Through this study, we analyzed the public's interest in defense reform 2.0, which is a representative defense policy, and suggested a plan to draw support for national policy.
Usually, text data consists of many variables, and some of them are closely correlated. Such multi-collinearity often results in inefficient or inaccurate statistical analysis. For supervised learning, one can select features by examining the relationship between target variables and explanatory variables. On the other hand, for unsupervised learning, since target variables are absent, one cannot use such a feature selection procedure as in supervised learning. In this study, we propose a word selection procedure that employs topic models to find latent topics. We substitute topics for the target variables and select terms which show high relevance for each topic. Applying the procedure to real data, we found that the proposed word selection procedure can give clear topic interpretation by removing high-frequency words prevalent in various topics. In addition, we observed that, by applying the selected variables to the classifiers such as naïve Bayes classifiers and support vector machines, the proposed feature selection procedure gives results comparable to those obtained by using class label information.
Focusing on FinTech keywords, this study is analyzing newspaper articles and Twitter data by using text mining methodology in order to understand trends in the industry of domestic digital financial service. In the growth of FinTech lifecycle, the frequency analysis has been performed by four important points: Mobile Payment Service, Internet Primary Bank, Data 3 Act, MyData Businesses. Utilizing frequency analysis, which combines the keywords 'China', 'USA', and 'Future' with the 'FinTech', has been predicting the FinTech industry regarding of the current and future position. Next, sentiment analysis was conducted on Twitter to quantify consumers' expectations and concerns about FinTech services. Therefore, this study is able to share meaningful perspective in that it presented strategic directions that the government and companies can use to understanding future FinTech market by combining frequency analysis and sentiment analysis.
This study aims to provide the implications of research development by comparing domestic and international studies conducted on the subject of FTA. To this end, among the papers written during the period from 2000 to July 23, 2020, papers whose title is searched by FTA (Free Trade Agreement) were selected as research data. In the case of domestic research, 1,944 searches from the Korean Citation Index (KCI) and 970 from the Web of Science and SCOPUS were selected for international research, and the research trend was analyzed through keywords and abstracts. Frequency analysis and word embedding (Word2vec) were used to analyze the data and visualized using t-SNE and Scattertext. The results of the analysis are as follows. First, in the top 30 keywords of domestic and international research, 16 out of 30 were found to be the same. In domestic research, many studies have been conducted to analyze the outcomes or expected effects of countries that have concluded or discussed FTAs with Korea, on the other hand there are diverse range of study subjects in international research. Second, in the word embedding analysis, t-SNE was used to visually represent the research connection of the top 60 keywords. Finally, Scattertext was used to visually indicate which keywords were frequently used in studies from 2000 to 2010, and from 2011 to 2020. This study is the first to draw implications for academic development through abstract and keyword analysis by applying various text mining approaches to the FTA related research papers. Further in-depth research is needed, including collecting a variety of FTA related text data, comparing and analyzing FTA studies in different countries.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.