• Title/Summary/Keyword: Text data

Search Result 2,953, Processing Time 0.029 seconds

Quantitative Text Mining for Social Science: Analysis of Immigrant in the Articles (사회과학을 위한 양적 텍스트 마이닝: 이주, 이민 키워드 논문 및 언론기사 분석)

  • Yi, Soo-Jeong;Choi, Doo-Young
    • The Journal of the Korea Contents Association
    • /
    • v.20 no.5
    • /
    • pp.118-127
    • /
    • 2020
  • The paper introduces trends and methodological challenges of quantitative Korean text analysis by using the case studies of academic and news media articles on "migration" and "immigration" within the periods of 2017-2019. The quantitative text analysis based on natural language processing technology (NLP) and this became an essential tool for social science. It is a part of data science that converts documents into structured data and performs hypothesis discovery and verification as the data and visualize data. Furthermore, we examed the commonly applied social scientific statistical models of quantitative text analysis by using Natural Language Processing (NLP) with R programming and Quanteda.

SVD-LDA: A Combined Model for Text Classification

  • Hai, Nguyen Cao Truong;Kim, Kyung-Im;Park, Hyuk-Ro
    • Journal of Information Processing Systems
    • /
    • v.5 no.1
    • /
    • pp.5-10
    • /
    • 2009
  • Text data has always accounted for a major portion of the world's information. As the volume of information increases exponentially, the portion of text data also increases significantly. Text classification is therefore still an important area of research. LDA is an updated, probabilistic model which has been used in many applications in many other fields. As regards text data, LDA also has many applications, which has been applied various enhancements. However, it seems that no applications take care of the input for LDA. In this paper, we suggest a way to map the input space to a reduced space, which may avoid the unreliability, ambiguity and redundancy of individual terms as descriptors. The purpose of this paper is to show that LDA can be perfectly performed in a "clean and clear" space. Experiments are conducted on 20 News Groups data sets. The results show that the proposed method can boost the classification results when the appropriate choice of rank of the reduced space is determined.

Analysis of IT Service Quality Elements Using Text Sentiment Analysis (텍스트 감정분석을 이용한 IT 서비스 품질요소 분석)

  • Kim, Hong Sam;Kim, Chong Su
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.43 no.4
    • /
    • pp.33-40
    • /
    • 2020
  • In order to satisfy customers, it is important to identify the quality elements that affect customers' satisfaction. The Kano model has been widely used in identifying multi-dimensional quality attributes in this purpose. However, the model suffers from various shortcomings and limitations, especially those related to survey practices such as the data amount, reply attitude and cost. In this research, a model based on the text sentiment analysis is proposed, which aims to substitute the survey-based data gathering process of Kano models with sentiment analysis. In this model, from the set of opinion text, quality elements for the research are extracted using the morpheme analysis. The opinions' polarity attributes are evaluated using text sentiment analysis, and those polarity text items are transformed into equivalent Kano survey questions. Replies for the transformed survey questions are generated based on the total score of the original data. Then, the question-reply set is analyzed using both the original Kano evaluation method and the satisfaction index method. The proposed research model has been tested using a large amount of data of public IT service project evaluations. The result shows that it can replace the existing practice and it promises advantages in terms of quality and cost of data gathering. The authors hope that the proposed model of this research may serve as a new quality analysis model for a wide range of areas.

Determining Feature-Size for Text to Numeric Conversion based on BOW and TF-IDF

  • Alyamani, Hasan J.
    • International Journal of Computer Science & Network Security
    • /
    • v.22 no.1
    • /
    • pp.283-287
    • /
    • 2022
  • Machine Learning is the most popular method used in data science. Growth of data is not only numeric data but also text data. Most of the algorithm of supervised and unsupervised machine learning algorithms use numeric data. Now it is required to convert text data into numeric. There are many techniques for this conversion. Researcher confuses which technique is best in what situation. Here in proposed work BOW (Bag-of-Words) and TF-IDF (Term-Frequency-Inverse-Document-Frequency) has been studied based on different features to determine best method. After experimental results on text data, TF-IDF and BOW both provide better performance at range from 100 to 150 number of features.

A Methodology for Customer Core Requirement Analysis by Using Text Mining : Focused on Chinese Online Cosmetics Market (텍스트 마이닝을 활용한 사용자 핵심 요구사항 분석 방법론 : 중국 온라인 화장품 시장을 중심으로)

  • Shin, Yoon Sig;Baek, Dong Hyun
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.44 no.2
    • /
    • pp.66-77
    • /
    • 2021
  • Companies widely use survey to identify customer requirements, but the survey has some problems. First of all, the response is passive due to pre-designed questionnaire by companies which are the surveyor. Second, the surveyor needs to have good preliminary knowledge to improve the quality of the survey. On the other hand, text mining is an excellent way to compensate for the limitations of surveys. Recently, the importance of online review is steadily grown, and the enormous amount of text data has increased as Internet usage higher. Also, a technique to extract high-quality information from text data called Text Mining is improving. However, previous studies tend to focus on improving the accuracy of individual analytics techniques. This study proposes the methodology by combining several text mining techniques and has mainly three contributions. Firstly, able to extract information from text data without a preliminary design of the surveyor. Secondly, no need for prior knowledge to extract information. Lastly, this method provides quantitative sentiment score that can be used in decision-making.

Multi-Dimensional Keyword Search and Analysis of Hotel Review Data Using Multi-Dimensional Text Cubes (다차원 텍스트 큐브를 이용한 호텔 리뷰 데이터의 다차원 키워드 검색 및 분석)

  • Kim, Namsoo;Lee, Suan;Jo, Sunhwa;Kim, Jinho
    • Journal of Information Technology and Architecture
    • /
    • v.11 no.1
    • /
    • pp.63-73
    • /
    • 2014
  • As the advance of WWW, unstructured data including texts are taking users' interests more and more. These unstructured data created by WWW users represent users' subjective opinions thus we can get very useful information such as users' personal tastes or perspectives from them if we analyze appropriately. In this paper, we provide various analysis efficiently for unstructured text documents by taking advantage of OLAP (On-Line Analytical Processing) multidimensional cube technology. OLAP cubes have been widely used for the multidimensional analysis for structured data such as simple alphabetic and numberic data but they didn't have used for unstructured data consisting of long texts. In order to provide multidimensional analysis for unstructured text data, however, Text Cube model has been proposed precently. It incorporates term frequency and inverted index as measurements to search and analyze text databases which play key roles in information retrieval. The primary goal of this paper is to apply this text cube model to a real data set from in an Internet site sharing hotel information and to provide multidimensional analysis for users' reviews on hotels written in texts. To achieve this goal, we first build text cubes for the hotel review data. By using the text cubes, we design and implement the system which provides multidimensional keyword search features to search and to analyze review texts on various dimensions. This system will be able to help users to get valuable guest-subjective summary information easily. Furthermore, this paper evaluats the proposed systems through various experiments and it reveals the effectiveness of the system.

HTML Text Extraction Using Frequency Analysis (빈도 분석을 이용한 HTML 텍스트 추출)

  • Kim, Jin-Hwan;Kim, Eun-Gyung
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.25 no.9
    • /
    • pp.1135-1143
    • /
    • 2021
  • Recently, text collection using a web crawler for big data analysis has been frequently performed. However, in order to collect only the necessary text from a web page that is complexly composed of numerous tags and texts, there is a cumbersome requirement to specify HTML tags and style attributes that contain the text required for big data analysis in the web crawler. In this paper, we proposed a method of extracting text using the frequency of text appearing in web pages without specifying HTML tags and style attributes. In the proposed method, the text was extracted from the DOM tree of all collected web pages, the frequency of appearance of the text was analyzed, and the main text was extracted by excluding the text with high frequency of appearance. Through this study, the superiority of the proposed method was verified.

A Study on the Method for Extracting the Purpose-Specific Customized Information from Online Product Reviews based on Text Mining (텍스트 마이닝 기반의 온라인 상품 리뷰 추출을 통한 목적별 맞춤화 정보 도출 방법론 연구)

  • Kim, Joo Young;Kim, Dong soo
    • The Journal of Society for e-Business Studies
    • /
    • v.21 no.2
    • /
    • pp.151-161
    • /
    • 2016
  • In the era of the Web 2.0, characterized by the openness, sharing and participation, it is easy for internet users to produce and share the data. The amount of the unstructured data which occupies most of the digital world's data has increased exponentially. One of the kinds of the unstructured data called personal online product reviews is necessary for both the company that produces those products and the potential customers who are interested in those products. In order to extract useful information from lots of scattered review data, the process of collecting data, storing, preprocessing, analyzing, and drawing a conclusion is needed. Therefore we introduce the text-mining methodology for applying the natural language process technology to the text format data like product review in order to carry out extracting structured data by using R programming. Also, we introduce the data-mining to derive the purpose-specific customized information from the structured review information drawn by the text-mining.

Detecting Spam Data for Securing the Reliability of Text Analysis (텍스트 분석의 신뢰성 확보를 위한 스팸 데이터 식별 방안)

  • Hyun, Yoonjin;Kim, Namgyu
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.42 no.2
    • /
    • pp.493-504
    • /
    • 2017
  • Recently, tremendous amounts of unstructured text data that is distributed through news, blogs, and social media has gained much attention from many researchers and practitioners as this data contains abundant information about various consumers' opinions. However, as the usefulness of text data is increasing, more and more attempts to gain profits by distorting text data maliciously or nonmaliciously are also increasing. This increase in spam text data not only burdens users who want to obtain useful information with a large amount of inappropriate information, but also damages the reliability of information and information providers. Therefore, efforts must be made to improve the reliability of information and the quality of analysis results by detecting and removing spam data in advance. For this purpose, many studies to detect spam have been actively conducted in areas such as opinion spam detection, spam e-mail detection, and web spam detection. In this study, we introduce core concepts and current research trends of spam detection and propose a methodology to detect the spam tag of a blog as one of the challenging attempts to improve the reliability of blog information.

Text Classification on Social Network Platforms Based on Deep Learning Models

  • YA, Chen;Tan, Juan;Hoekyung, Jung
    • Journal of information and communication convergence engineering
    • /
    • v.21 no.1
    • /
    • pp.9-16
    • /
    • 2023
  • The natural language on social network platforms has a certain front-to-back dependency in structure, and the direct conversion of Chinese text into a vector makes the dimensionality very high, thereby resulting in the low accuracy of existing text classification methods. To this end, this study establishes a deep learning model that combines a big data ultra-deep convolutional neural network (UDCNN) and long short-term memory network (LSTM). The deep structure of UDCNN is used to extract the features of text vector classification. The LSTM stores historical information to extract the context dependency of long texts, and word embedding is introduced to convert the text into low-dimensional vectors. Experiments are conducted on the social network platforms Sogou corpus and the University HowNet Chinese corpus. The research results show that compared with CNN + rand, LSTM, and other models, the neural network deep learning hybrid model can effectively improve the accuracy of text classification.