• Title/Summary/Keyword: Text data

Search Result 2,953, Processing Time 0.038 seconds

A Proposal on Data Modification Detection System using SHA-256 in Digital Forensics (디지털 포렌식을 위한 SHA-256 활용 데이터 수정 감지시스템 제안)

  • Jang, Eun-Jin;Shin, Seung-Jung
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.21 no.4
    • /
    • pp.9-13
    • /
    • 2021
  • With the development of communication technology, various forms of digital crime are increasing, and the need for digital forensics is increasing. Moreover, if a textual document containing sensitive data is deliberately deleted or modified by a particular person, it could be important data to prove its connection to a particular person and crime through a system that checks for data modification detection. This paper proposes a data modification detection system that can analyze the hash data, file size, file creation date, file modification date, file access date, etc. of SHA-256, one of the encryption techniques, focusing on text files, to compare whether the target text file is modified or not.

Utilizing Block chain in the Internet of Things for an Effective Security Sharing Scheme

  • Sathish C;Yesubai Rubavathi, C
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.17 no.6
    • /
    • pp.1600-1619
    • /
    • 2023
  • Organizations and other institutions have recently started using cloud service providers to store and share information in light of the Internet of Things (IoT). The major issues with this storage are preventing unauthorized access and data theft from outside parties. The Block chain based Security Sharing scheme with Data Access Control (BSSDAC) was implemented to improve access control and secure data transaction operations. The goal of this research is to strengthen Data Access Control (DAC) and security in IoT applications. To improve the security of personal data, cypher text-Policy Attribute-Based Encryption (CP-ABE) can be developed. The Aquila Optimization Algorithm (AOA) generates keys in the CP-ABE. DAC based on a block chain can be created to maintain the owner's security. The block chain based CP-ABE was developed to maintain secures data storage to sharing. With block chain technology, the data owner is enhancing data security and access management. Finally, a block chain-based solution can be used to secure data and restrict who has access to it. Performance of the suggested method is evaluated after it has been implemented in MATLAB. To compare the proposed method with current practices, Rivest-Shamir-Adleman (RSA) and Elliptic Curve Cryptography (ECC) are both used.

Design of Twitter data collection system for regional sentiment analysis (지역별 감성 분석을 위한 트위터 데이터 수집 시스템 설계)

  • Choi, Kiwon;Kim, Hee-Cheol
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2017.10a
    • /
    • pp.506-509
    • /
    • 2017
  • Opinion mining is a way to analyze the emotions in the text and is used to identify the emotional state of the author and to find out the opinions of the public. As you can analyze individual emotions through opinion mining, if you analyze the text by region, you can find out the emotional state you have in each region. The regional sentiment analysis can obtain information that could not be obtained from personal sentiment analysis, and if a certain area has emotions, it can understand the cause. For regional sentiment analysis, we need text data created by region, so we need to collect data through Twitter crawling. Therefore, this paper designs a Twitter data collection system for regional sentiment analysis. The client requests the tweet data of the specific region and time, and the server collects and transmits the requested tweet data from the client. Through the latitude and longitude values of the region, it collects the tweet data of the area, and it can manage the text by region and time through collected data. We expect efficient data collection and management for emotional analysis through the design of this system.

  • PDF

BigData Research in Information Systems : Focusing on Journal Articles about Information Systems (정보시스템 분야의 빅데이터 연구 흐름 분석 : Information Systems 관련 저널을 중심으로)

  • Park, Kyungbo;Kim, Juyeong;Kim, Han-Min
    • Asia-pacific Journal of Multimedia Services Convergent with Art, Humanities, and Sociology
    • /
    • v.9 no.6
    • /
    • pp.681-689
    • /
    • 2019
  • The 46th Davos Forum of the World Economic Forum (WEF) predicts the continued growth of the 4th industry in the future. Currently, the 4th industry is attracting attention in various academic and practical fields. As a core technology of the 4th industry, Big Data is regarded as a major resource to lead the 4th industrial revolution along with artificial intelligence. As the growing interest in Big Data, researches on it are actively being done. However, literature studies on existing Big Data are focused on qualitative research, and quantitative research is insufficient. Therefore, this study aims to analyze the big data research flow in MIS field and to make academic thirst for quantification. This study has collected 145 abstracts of big data papers published in major journals in MIS field and confirmed that a majority of papers are published in Decision Support Systems Journal. Text mining and text network analysis were performed only for DSS journals to eliminate bias. As a result of the analysis, it was found out that researches on combining big data in the management field between 2012 and 2014, and researches on system development and analysis method for using big data from 2015 to 2017 were conducted.

Latent class model for mixed variables with applications to text data (혼합모드 잠재범주모형을 통한 텍스트 자료의 분석)

  • Shin, Hyun Soo;Seo, Byungtae
    • The Korean Journal of Applied Statistics
    • /
    • v.32 no.6
    • /
    • pp.837-849
    • /
    • 2019
  • Latent class models (LCM) are useful tools to draw hidden information from categorical data. This model can also be interpreted as a mixture model with multinomial component distributions. In some cases, however, an available dataset may contain both categorical and count or continuous data. For such cases, we can extend the LCM to a mixture model with both multinomial and other component distributions such as normal and Poisson distributions. In this paper, we consider a LCM for the data containing categorical and count data to analyze the Drug Review dataset which contains categorical responses and text review. From this data analysis, we show that we can obtain more specific hidden inforamtion than those from the LCM only with categorical responses.

An Investigation of a Sensibility Evaluation Method Using Big Data in the Field of Design -Focusing on Hanbok Related Design Factors, Sensibility Responses, and Evaluation Terms- (디자인 분야에서 빅데이터를 활용한 감성평가방법 모색 -한복 연관 디자인 요소, 감성적 반응, 평가어휘를 중심으로-)

  • An, Hyosun;Lee, Inseong
    • Journal of the Korean Society of Clothing and Textiles
    • /
    • v.40 no.6
    • /
    • pp.1034-1044
    • /
    • 2016
  • This study seeks a method to objectively evaluate sensibility based on Big Data in the field of design. In order to do so, this study examined the sensibility responses on design factors for the public through a network analysis of texts displayed in social media. 'Hanbok', a formal clothing that represents Korea, was selected as the subject for the research methodology. We then collected 47,677 keywords related to Hanbok from 12,000 posts on Naver blogs from January $1^{st}$ to December $31^{st}$ 2015 and that analyzed using social matrix (a Big Data analysis software) rather than using previous survey methods. We also derived 56 key-words related to design elements and sensibility responses of Hanbok. Centrality analysis and CONCOR analysis were conducted using Ucinet6. The visualization of the network text analysis allowed the categorization of the main design factors of Hanbok with evaluation terms that mean positive, negative, and neutral sensibility responses. We also derived key evaluation factors for Hanbok as fitting, rationality, trend, and uniqueness. The evaluation terms extracted based on natural language processing technologies of atypical data have validity as a scale for evaluation and are expected to be suitable for utilization in an index for sensibility evaluation that supplements the limits of previous surveys and statistical analysis methods. The network text analysis method used in this study provides new guidelines for the use of Big Data involving sensibility evaluation methods in the field of design.

A Study on the Consumer's Perception of HiSeoul Fashion Show Using Big Data Analysis (빅데이터 분석을 활용한 하이서울패션쇼에 대한 소비자 인식 조사)

  • Han, Ki Hyang
    • Journal of Fashion Business
    • /
    • v.23 no.5
    • /
    • pp.81-95
    • /
    • 2019
  • The purpose of this study is to research consumers' perception of the HiSeoul fashion show, which is being used by new designers as a means of promotion, and to propose a strategy for revitalizing new designer brands. This was done in order to secure basic data from fashion consumers, to help guide marketing strategies and promote rising designers. In this research, the consumers' perception of HiSeoul fashion show was verified using text-mining, data refinement and word clouding that was undertaken by TEXTOM3.0. Also, semantic network analysis, CONCOR analysis and visualization of the analysis results were performed using Ucinet 6.0 and NetDraw. "HiSeoul fashion show" was used as the keyword for text-mining and data was collected from March 1, 2018 to April 30, 2019. Using frequency analysis, TF-IDF, and N-gram, it was also shown that consumers are aware of places where shows are held, such as DDP and Igansumun. It was also revealed that consumers recognize rising designer brands, designer's names, the names of guests attending the show and the photo times. This study is meaningful in that it not only confirmed consumers' interest in new designer brands participating in the HiSeoul Fashion Show through big data but also confirmed that it is available as a marketing strategy to boost brand sales. This study suggests using HiSeoul show room to induce consumer sales, or inviting guests that match the brand image to promote them on SNS on the day the show is held for a marketing strategy.

A Study on the Perception of Fashion Platforms and Fashion Smart Factories using Big Data Analysis (빅데이터 분석을 이용한 패션 플랫폼과 패션 스마트 팩토리에 대한 인식 연구)

  • Song, Eun-young
    • Fashion & Textile Research Journal
    • /
    • v.23 no.6
    • /
    • pp.799-809
    • /
    • 2021
  • This study aimed to grasp the perceptions and trends in fashion platforms and fashion smart factories using big data analysis. As a research method, big data analysis, fashion platform, and smart factory were identified through literature and prior studies, and text mining analysis and network analysis were performed after collecting text from the web environment between April 2019 and April 2021. After data purification with Textom, the words of fashion platform (1,0591 pieces) and fashion smart factory (9750 pieces) were used for analysis. Key words were derived, the frequency of appearance was calculated, and the results were visualized in word cloud and N-gram. The top 70 words by frequency of appearance were used to generate a matrix, structural equivalence analysis was performed, and the results were displayed using network visualization and dendrograms. The collected data revealed that smart factory had high social issues, but consumer interest and academic research were insufficient, and the amount and frequency of related words on the fashion platform were both high. As a result of structural equalization analysis, it was found that fashion platforms with strong connectivity between clusters are creating new competitiveness with service platforms that add sharing, manufacturing, and curation functions, and fashion smart factories can expect future value to grow together, according to digital technology innovation and platforms. This study can serve as a foundation for future research topics related to fashion platforms and smart factories.

Analysis of CSR·CSV·ESG Research Trends - Based on Big Data Analysis - (CSR·CSV·ESG 연구 동향 분석 - 빅데이터 분석을 중심으로 -)

  • Lee, Eun Ji;Moon, Jaeyoung
    • Journal of Korean Society for Quality Management
    • /
    • v.50 no.4
    • /
    • pp.751-776
    • /
    • 2022
  • Purpose: The purpose of this paper is to present implications by analyzing research trends on CSR, CSV and ESG by text analysis and visual analysis(Comprehensive/ Fields / Years-based) which are big data analyses, by collecting data based on previous studies on CSR, CSV and ESG. Methods: For the collection of analysis data, deep learning was used in the integrated search on the Academic Research Information Service (www.riss.kr) to search for "CSR", "CSV" and "ESG" as search terms, and the Korean abstracts and keyword were scrapped out of the extracted paper and they are organize into EXCEL. For the final step, CSR 2,847 papers, CSV 395 papers, ESG 555 papers derived were analyzed using the Rx64 4.0.2 program and Rstudio using text mining, one of the big data analysis techniques, and Word Cloud for visualization. Results: The results of this study are as follows; CSR, CSV, and ESG studies showed that research slowed down somewhat before 2010, but research increased rapidly until recently in 2019. Research have been found to be heavily researched in the fields of social science, art and physical education, and engineering. As a result of the study, there were many keyword of 'corporate', 'social', and 'responsibility', which were similar in the word cloud analysis. Looking at the frequent keyword and word cloud analysis by field and year, overall keyword were derived similar to all keyword by year. However, some differences appeared in each field. Conclusion: Government support and expert support for CSR, CSV and ESG should be activated, and researches on technology-based strategies are needed. In the future, it is necessary to take various approaches to them. If researches are conducted in consideration of the environment or energy, it is judged that bigger implications can be presented.

Social perception of the Arduino lecture as seen in big data (빅데이터 분석을 통한 아두이노 강의에 대한 사회적 인식)

  • Lee, Eunsang
    • Journal of The Korean Association of Information Education
    • /
    • v.25 no.6
    • /
    • pp.935-945
    • /
    • 2021
  • The purpose of this study is to analyze the social perception of Arduino lecture using big data analysis method. For this purpose, data from January 2012 to May 2021 were collected using the Textom website as a keyword searched for 'arduino + lecture' in blogs, cafes, and news channels of NAVER website. The collected data was refined using the Textom website, and text mining analysis and semantic network analysis were performed by opening the Textom website, Ucinet 6, and Netdraw programs. As a result of text mining analysis such as frequency analysis, TF-IDF analysis, and degree centrality it was confirmed that 'education' and 'coding' were the top keywords. As a result of CONCOR analysis for semantic network analysis, four clusters can be identified: 'Arduino-related education', 'Physical computing-related lecture', 'Arduino special lecture', and 'GUI programming'. Through this study, it was possible to confirm various meaningful social perceptions of the general public in relation to Arduino lecture on the Internet. The results of this study will be used as data that provides meaningful implications for instructors preparing for Arduino lectures, researchers studying the subject, and policy makers who establish software education or coding education and related policies.