Journal of the Korean Society for information Management
/
v.24
no.3
/
pp.363-383
/
2007
Global map of science, which is visualizing large scientific domains, can be used to visually analyze the structural relationships between major areas of science. This paper reviewed previous efforts on global science map, and then tried to making a science map of Korea with some new methods. There are several research groups on making global map of science including Dr. Small and Dr. Garfield of ISI (now Thompson Scientific), SCImago research group at the University of Granada, and Dr. Borner's InfoVis Lab at the Indiana University. They called their maps as science map or scientogram and called the activity of mapping science as scientography. Most of the previous works are based on citations between scientific articles. However citation database for Korean journal articles is still under construction. This research tried to make a Korean science map with the text in the proposals suggested for funding from Korean Research Foundation. Two kinds of method for generating networks of scientific fields are used. One is Pathfinder network (PFNet) alogorithm which has been used in several published bibliometric studies. The other is clustering-based network (CBnet) algorithm which was proposed recently as an alternative to PFNet. In order to take into account both views of the two algorithms, the resulting maps are combined to a final science map of Korea.
Journal of the Korea Society of Computer and Information
/
v.17
no.9
/
pp.75-84
/
2012
HMM-based Text-to-Speech systems generally utilize context dependent tri-phone units from a large corpus speech DB to enhance the synthetic speech. To downsize a large corpus speech DB, acoustically similar tri-phone units are clustered based on the decision tree using context dependent information. Context dependent information includes phoneme sequence as well as prosodic information because the naturalness of synthetic speech highly depends on the prosody such as pause, intonation pattern, and segmental duration. However, if the prosodic information was complicated, many context dependent phonemes would have no examples in the training data, and clustering would provide a smoothed feature which will generate unnatural synthetic speech. In this paper, instead of complicate prosodic information we propose a simple three prosodic boundary types and decision tree questions that use rising tone, falling tone, and monotonic tone to improve naturalness. Experimental results show that our proposed method can improve naturalness of a HMM-based Korean TTS and get high MOS in the perception test.
This study aims to conduct a comprehensive meta-study from the perspective of content analysis to explore trends in Korean academic research on the sharing economy by using the big data analytics. Comprehensive meta-analysis methodology can examine the entire set of research results historically and wholly to illuminate the tendency or properties of the overall research trend. Academic research related to the sharing economy first appeared in the year in which Professor Lawrence Lessig introduced the concept of the sharing economy to the world in 2008, but research began in earnest in 2013. In particular, between 2006 and 2008, research improved dramatically. In order to grasp the overall flow of domestic academic research of trends, 8 years of papers from 2013 to the present have been selected as target analysis papers, focusing on titles, keywords, and abstracts using database of electronic journals. Big data analysis was performed in the order of cleaning, analysis, and visualization of the collected data to derive research trends and insights by year and type of literature. We used Python3.7 and Textom analysis tools for data preprocessing, text mining, and metrics frequency analysis for key word extraction, and N-gram chart, centrality and social network analysis and CONCOR clustering visualization based on UCINET6/NetDraw, Textom program, the keywords clustered into 8 groups were used to derive the typologies of each research trend. The outcomes of this study will provide useful theoretical insights and guideline to future studies.
Proceedings of the Korea Contents Association Conference
/
2006.11a
/
pp.652-656
/
2006
Bibliographic information retrieval systems require bibliographic data such as authors, organizations, source of publication to be uniquely identified using keys. In particular, when authors are represented simply as their names, users bear the burden of manually discriminating different users of the same name. Previous approaches to resolving the problem of same-name authors rely on bibliographic data such as co-author information, titles of articles, etc. However, these methods cannot handle the case of single author articles, or the case when articles do not have common terms in their titles. To complement the previous methods, this study introduces a classification-based approach using similarity between full-text of articles. Experiments using recent domestic proceedings showed that the proposed method has the potential to supplement the previous meta-data based approaches.
Journal of the Korea Academia-Industrial cooperation Society
/
v.11
no.4
/
pp.1458-1467
/
2010
Recently, imitation and infringement rights of an intellectual property are being recognized as impediments to nation's industrial growth. To prevent the huge loss which comes from theses impediments, many researchers are studying protection and efficient management of an intellectual property in various ways. Especially, the prediction of patent registration is very important part to protect and assert intellectual property rights. In this study, we propose the patent document analysis method by using text mining to predict whether the patent is registered or rejected. In the first instance, the proposed method builds the database by using the word frequencies of the rejected patent documents. And comparing the builded database with another patent documents draws the similarity value between each patent document and the database. In this study, we used k-means which is partitioning clustering algorithm to select criteria value of patent rejection. In result, we found conclusion that some patent which similar to rejected patent have strong possibility of rejection. We used U.S.A patent documents about bluetooth technology, solar battery technology and display technology for experiment data.
In this paper, we study the enhancement of VQ (Vector Quantization) design for text dependent speaker recognition. In a concrete way, we present the non-Iterative method which makes a vector quantization codebook and this method Is nut Iterative learning so that the computational complexity is epochally reduced. The proposed semi-noniterative VQ design method contrasts with the existing design method which uses the iterative learning algorithm for every training speaker. The characteristics of a semi-noniterative VQ design is as follows. First, the proposed method performs the iterative learning only for the reference speaker, but the existing method performs the iterative learning for every speaker. Second, the quantization region of the non-reference speaker is equivalent for a quantization region of the reference speaker. And the quantization point of the non-reference speaker is the optimal point for the statistical distribution of the non-reference speaker In the numerical experiment, we use the 12th met-cepstrum feature vectors of 20 speakers and compare it with the existing method, changing the codebook size from 2 to 32. The recognition rate of the proposed method is 100% for suitable codebook size and adequate training data. It is equal to the recognition rate of the existing method. Therefore the proposed semi-noniterative VQ design method is, reducing computational complexity and maintaining the recognition rate, new alternative proposal.
Journal of the Korea Academia-Industrial cooperation Society
/
v.22
no.3
/
pp.661-670
/
2021
Research trends can be usefully used to determine the importance of research topics by period, identify insufficient research fields, and discover new fields. In this study, research trends of urban spaces, where various problems are occurring due to population concentration and urbanization, were analyzed by topic modeling. The analysis target was the abstracts of papers listed in the Korea Citation Index (KCI) published between 2002 and 2019. Topic modeling is an algorithm-based text mining technique that can discover a certain pattern in the entire content, and it is easy to cluster. In this study, the frequency of keywords, trends by year, topic derivation, cluster by topic, and trend by topic type were analyzed. Research in urban regeneration is increasing continuously, and it was analyzed as a field where detailed topics could be expanded in the future. Furthermore, urban regeneration is now becoming a regular research field. On the other hand, topics related to development/growth and energy/environment have entered a stagnation period. This study is meaningful because the correlation and trends between keywords were analyzed using topic modeling targeting all domestic urban studies.
In March 2020, as it was declared a COVID-19 pandemic, various quarantine measures were taken. Accordingly, many changes have occurred in the tourism and hospitality industries. In particular, quarantine guidelines, such as the introduction of non-face-to-face services and social distancing, were implemented in the restaurant industry. For decades, research on restaurant attributes has emphasized the importance of three attributes: atmosphere, service quality, and food quality. Nevertheless, to the best of our knowledge, research on restaurant attributes considering the COVID-19 situation is insufficient. To respond to this call, this study attempted an exploratory approach to classify new restaurant attributes based on understanding environmental changes. This study considered 31,115 online reviews registered in Naverplace as an analysis unit, with 475 general restaurants located in Euljiro, Seoul. Further, we attempted to classify restaurant attributes by clustering words within online reviews through TF-IDF and LDA topic modeling techniques. As a result of the analysis, the factors of "prevention of infectious diseases" were derived as new attributes of restaurants in the context of COVID-19 situations, along with the atmosphere, service quality, and food quality. This study is of academic significance by expanding the literature of existing restaurant attributes in that it categorized the three attributes presented by existing restaurant attributes and further presented new attributes. Moreover, the analysis results have led to the formulation of practical recommendations, considering both the operational aspects of restaurants and policy implications.
Due to the explosive growth of mobile application services, categorizing mobile application services is in need in practice from both customers' and developers' perspectives. Despite the fact, however, there have been limited studies regarding systematic categorization of mobile application services. In response, this study proposed a method for categorizing mobile application services, and suggested a service taxonomy based on the network clustering results. Total of 1,607 mobile healthcare services are collected through the Google Play store. The network analysis is conducted based on the similarity of descriptions in each application service. Modularity detection analysis is conducted to detects communities in the network, and service taxonomy is derived based on each cluster. This study is expected to provide a systematic approach to the service categorization, which is helpful to both customers who want to navigate mobile application service in a systematic manner and developers who desire to analyze the trend of mobile application services.
Journal of the Korea Academia-Industrial cooperation Society
/
v.19
no.8
/
pp.64-70
/
2018
The development of weapon systems (or components) is hindered by the number of tests due to the limited development period and cost, which reduces the scale of accumulated data related to failures. Nevertheless, because a large amount of failure data and maintenance details during the operational period are managed by computerized data, the cause of failure of weapon systems (or components) can be analyzed using the data. On the other hand, analyzing the failure and maintenance details of various weapon systems is difficult because of the variation among groups and companies, and details of the cause of failure are described as unstructured text data. Fortunately, the recent developments of big data processing technology, machine learning algorithm, and improved HW computation ability have supported major research into various methods for processing the above unstructured data. In this paper, unstructured data related to the failure / maintenance of defense weapon systems (or components) is presented by applying doc2vec, a machine learning technique, to analyze the failure cases.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.