• Title/Summary/Keyword: Text based

Search Result 3,987, Processing Time 0.035 seconds

Touch TT: Scene Text Extractor Using Touchscreen Interface

  • Jung, Je-Hyun;Lee, Seong-Hun;Cho, Min-Su;Kim, Jin-Hyung
    • ETRI Journal
    • /
    • v.33 no.1
    • /
    • pp.78-88
    • /
    • 2011
  • In this paper, we present the Touch Text exTractor (Touch TT), an interactive text segmentation tool for the extraction of scene text from camera-based images. Touch TT provides a natural interface for a user to simply indicate the location of text regions with a simple touchline. Touch TT then automatically estimates the text color and roughly locates the text regions. By inferring text characteristics from the estimated text color and text region, Touch TT can extract text components. Touch TT can also handle partially drawn lines which cover only a small section of text area. The proposed system achieves reasonable accuracy for text extraction from moderately difficult examples from the ICDAR 2003 database and our own database.

Reliable Image-Text Fusion CAPTCHA to Improve User-Friendliness and Efficiency (사용자 편의성과 효율성을 증진하기 위한 신뢰도 높은 이미지-텍스트 융합 CAPTCHA)

  • Moon, Kwang-Ho;Kim, Yoo-Sung
    • The KIPS Transactions:PartC
    • /
    • v.17C no.1
    • /
    • pp.27-36
    • /
    • 2010
  • In Web registration pages and online polling applications, CAPTCHA(Completely Automated Public Turing Test To Tell Computers and Human Apart) is used for distinguishing human users from automated programs. Text-based CAPTCHAs have been widely used in many popular Web sites in which distorted text is used. However, because the advanced optical character recognition techniques can recognize the distorted texts, the reliability becomes low. Image-based CAPTCHAs have been proposed to improve the reliability of the text-based CAPTCHAs. However, these systems also are known as having some drawbacks. First, some image-based CAPTCHA systems with small number of image files in their image dictionary is not so reliable since attacker can recognize images by repeated executions of machine learning programs. Second, users may feel uncomfortable since they have to try CAPTCHA tests repeatedly when they fail to input a correct keyword. Third, some image-base CAPTCHAs require high communication cost since they should send several image files for one CAPTCHA. To solve these problems of image-based CAPTCHA, this paper proposes a new CAPTCHA based on both image and text. In this system, an image and keywords are integrated into one CAPTCHA image to give user a hint for the answer keyword. The proposed CAPTCHA can help users to input easily the answer keyword with the hint in the fused image. Also, the proposed system can reduce the communication costs since it uses only a fused image file for one CAPTCHA. To improve the reliability of the image-text fusion CAPTCHA, we also propose a dynamic building method of large image dictionary from gathering huge amount of images from theinternet with filtering phase for preserving the correctness of CAPTCHA images. In this paper, we proved that the proposed image-text fusion CAPTCHA provides users more convenience and high reliability than the image-based CAPTCHA through experiments.

Impact of Instance Selection on kNN-Based Text Categorization

  • Barigou, Fatiha
    • Journal of Information Processing Systems
    • /
    • v.14 no.2
    • /
    • pp.418-434
    • /
    • 2018
  • With the increasing use of the Internet and electronic documents, automatic text categorization becomes imperative. Several machine learning algorithms have been proposed for text categorization. The k-nearest neighbor algorithm (kNN) is known to be one of the best state of the art classifiers when used for text categorization. However, kNN suffers from limitations such as high computation when classifying new instances. Instance selection techniques have emerged as highly competitive methods to improve kNN through data reduction. However previous works have evaluated those approaches only on structured datasets. In addition, their performance has not been examined over the text categorization domain where the dimensionality and size of the dataset is very high. Motivated by these observations, this paper investigates and analyzes the impact of instance selection on kNN-based text categorization in terms of various aspects such as classification accuracy, classification efficiency, and data reduction.

The Adaptive SPAM Mail Detection System using Clustering based on Text Mining

  • Hong, Sung-Sam;Kong, Jong-Hwan;Han, Myung-Mook
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.8 no.6
    • /
    • pp.2186-2196
    • /
    • 2014
  • Spam mail is one of the most general mail dysfunctions, which may cause psychological damage to internet users. As internet usage increases, the amount of spam mail has also gradually increased. Indiscriminate sending, in particular, occurs when spam mail is sent using smart phones or tablets connected to wireless networks. Spam mail consists of approximately 68% of mail traffic; however, it is believed that the true percentage of spam mail is at a much more severe level. In order to analyze and detect spam mail, we introduce a technique based on spam mail characteristics and text mining; in particular, spam mail is detected by extracting the linguistic analysis and language processing. Existing spam mail is analyzed, and hidden spam signatures are extracted using text clustering. Our proposed method utilizes a text mining system to improve the detection and error detection rates for existing spam mail and to respond to new spam mail types.

Text Extraction in HIS Color Space by Weighting Scheme

  • Le, Thi Khue Van;Lee, Gueesang
    • Smart Media Journal
    • /
    • v.2 no.1
    • /
    • pp.31-36
    • /
    • 2013
  • A robust and efficient text extraction is very important for an accuracy of Optical Character Recognition (OCR) systems. Natural scene images with degradations such as uneven illumination, perspective distortion, complex background and multi color text give many challenges to computer vision task, especially in text extraction. In this paper, we propose a method for extraction of the text in signboard images based on a combination of mean shift algorithm and weighting scheme of hue and saturation in HSI color space for clustering algorithm. The number of clusters is determined automatically by mean shift-based density estimation, in which local clusters are estimated by repeatedly searching for higher density points in feature vector space. Weighting scheme of hue and saturation is used for formulation a new distance measure in cylindrical coordinate for text extraction. The obtained experimental results through various natural scene images are presented to demonstrate the effectiveness of our approach.

  • PDF

Implementation of Web-based Information System for Full-text Processing (전문 처리를 위한 웹 기반 정보시스템 구현)

  • Kim, Sang-Do;Mun, Byeong-Ju;Ryu, Geun-Ho
    • The Transactions of the Korea Information Processing Society
    • /
    • v.6 no.6
    • /
    • pp.1481-1492
    • /
    • 1999
  • As Internet is popularized by the advent of Web concept having characteristics such as open network, user-friendly, and easy-usage, there are many changes in Information systems providing various information. Web is rapidly transferred traditional Information systems to Web-based Information systems, because it provides not only text information but also multimedia information including image, audio, video, and etc. Also, as information contents were changed from text-based simple abstract information to full-text information, there was appeared various document formats processing Full-text information. But, as they naturally demand large systems memory, long processing time, broader transmission bandwidth, and etc, estimating of these factors is necessary when constructing information systems. This paper focuses on how to design and construct information system processing full-text information and providing function of an integrated document. Primarily, we should review standard document format which is used or developed, and any document format is appropriate to process full-text information in review with viewpoint of information system. Also, practically we should construct information system providing full-text information based on PDF document.

  • PDF

The Effectiveness of Streaming Video with Web Based Text in Online Course: Comparative Study on Three Types of Online Instruction for Korean College Students

  • HEO, JeongChul;HAN, Su-Mi
    • Educational Technology International
    • /
    • v.14 no.1
    • /
    • pp.1-26
    • /
    • 2013
  • This study is to identify whether three types of online instruction (text-based, video-based, and video-based instruction without text) and age category have a different influence on students' comprehension and motivation. Online students were randomly assigned to one of six groups, and they attended two-week online lectures via Course Management System. The comprehension test and the short form of IMMS were implemented when 114 participants accomplished two-week online lectures. The results revealed that using instructional video in online instruction is more effective instructional medium than text only in order to promote learner's motivation. Besides, older adults aged 41-60 are significantly different from younger adults (21-40 years old) in terms of students' comprehension. Furthermore, three types of online instructions are likely to be influenced by age category.

Patent Document Similarity Based on Image Analysis Using the SIFT-Algorithm and OCR-Text

  • Park, Jeong Beom;Mandl, Thomas;Kim, Do Wan
    • International Journal of Contents
    • /
    • v.13 no.4
    • /
    • pp.70-79
    • /
    • 2017
  • Images are an important element in patents and many experts use images to analyze a patent or to check differences between patents. However, there is little research on image analysis for patents partly because image processing is an advanced technology and typically patent images consist of visual parts as well as of text and numbers. This study suggests two methods for using image processing; the Scale Invariant Feature Transform(SIFT) algorithm and Optical Character Recognition(OCR). The first method which works with SIFT uses image feature points. Through feature matching, it can be applied to calculate the similarity between documents containing these images. And in the second method, OCR is used to extract text from the images. By using numbers which are extracted from an image, it is possible to extract the corresponding related text within the text passages. Subsequently, document similarity can be calculated based on the extracted text. Through comparing the suggested methods and an existing method based only on text for calculating the similarity, the feasibility is achieved. Additionally, the correlation between both the similarity measures is low which shows that they capture different aspects of the patent content.

An Efficient Machine Learning-based Text Summarization in the Malayalam Language

  • P Haroon, Rosna;Gafur M, Abdul;Nisha U, Barakkath
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.16 no.6
    • /
    • pp.1778-1799
    • /
    • 2022
  • Automatic text summarization is a procedure that packs enormous content into a more limited book that incorporates significant data. Malayalam is one of the toughest languages utilized in certain areas of India, most normally in Kerala and in Lakshadweep. Natural language processing in the Malayalam language is relatively low due to the complexity of the language as well as the scarcity of available resources. In this paper, a way is proposed to deal with the text summarization process in Malayalam documents by training a model based on the Support Vector Machine classification algorithm. Different features of the text are taken into account for training the machine so that the system can output the most important data from the input text. The classifier can classify the most important, important, average, and least significant sentences into separate classes and based on this, the machine will be able to create a summary of the input document. The user can select a compression ratio so that the system will output that much fraction of the summary. The model performance is measured by using different genres of Malayalam documents as well as documents from the same domain. The model is evaluated by considering content evaluation measures precision, recall, F score, and relative utility. Obtained precision and recall value shows that the model is trustable and found to be more relevant compared to the other summarizers.

Implementation of a Web-Based Electronic Text for High School's Probability and Statistics Education

  • Choi, Sook-Hee
    • Communications for Statistical Applications and Methods
    • /
    • v.11 no.2
    • /
    • pp.329-343
    • /
    • 2004
  • With advancement of computer and network, world wide web(WWW) as a medium of information communication is generalized in many fields. In educational aspect, applications of WWW as alternative media for class teachings or printed matters are increasing. In this article, we demonstrate a web-based electronic text on the 'probability and statistics' which is one of six fields of mathematics in the 7th curriculum. This text places importance on comprehension of concepts of probability and statistics as an applied science.