• Title/Summary/Keyword: Text analytics

Search Result 109, Processing Time 0.022 seconds

Machine Learning Algorithm Accuracy for Code-Switching Analytics in Detecting Mood

  • Latib, Latifah Abd;Subramaniam, Hema;Ramli, Siti Khadijah;Ali, Affezah;Yulia, Astri;Shahdan, Tengku Shahrom Tengku;Zulkefly, Nor Sheereen
    • International Journal of Computer Science & Network Security
    • /
    • v.22 no.9
    • /
    • pp.334-342
    • /
    • 2022
  • Nowadays, as we can notice on social media, most users choose to use more than one language in their online postings. Thus, social media analytics needs reviewing as code-switching analytics instead of traditional analytics. This paper aims to present evidence comparable to the accuracy of code-switching analytics techniques in analysing the mood state of social media users. We conducted a systematic literature review (SLR) to study the social media analytics that examined the effectiveness of code-switching analytics techniques. One primary question and three sub-questions have been raised for this purpose. The study investigates the computational models used to detect and measures emotional well-being. The study primarily focuses on online postings text, including the extended text analysis, analysing and predicting using past experiences, and classifying the mood upon analysis. We used thirty-two (32) papers for our evidence synthesis and identified four main task classifications that can be used potentially in code-switching analytics. The tasks include determining analytics algorithms, classification techniques, mood classes, and analytics flow. Results showed that CNN-BiLSTM was the machine learning algorithm that affected code-switching analytics accuracy the most with 83.21%. In addition, the analytics accuracy when using the code-mixing emotion corpus could enhance by about 20% compared to when performing with one language. Our meta-analyses showed that code-mixing emotion corpus was effective in improving the mood analytics accuracy level. This SLR result has pointed to two apparent gaps in the research field: i) lack of studies that focus on Malay-English code-mixing analytics and ii) lack of studies investigating various mood classes via the code-mixing approach.

Cross-national Analysis of Robot Research Using Non-Structured Text Analytics for R&D Policy

  • Kim, Jeong Hun;Seo, Han Sol;Lee, Jae Woong;Lee, Jung Won;Kwon, Oh Byung
    • Asia Pacific Journal of Business Review
    • /
    • v.1 no.2
    • /
    • pp.63-88
    • /
    • 2017
  • With the advent of new frontiers in robotics, the spectrum of robot research area has widened in many fields and applications. Other than conventional robot research, many technologies such as smart devices, drones, healthcare robots, and soft robots are emerging as promising applications. Due to the research complexity of this topic, this research requires international collaboration and should be fertilized by R&D policies. This paper aims to propose a method to perform a cross-national analysis of robot research with unstructured data such as papers in the proceedings of an international conference. Text analytics are applied to extract research issues and applications in an automatic manner.

Bankruptcy Prediction Modeling Using Qualitative Information Based on Big Data Analytics (빅데이터 기반의 정성 정보를 활용한 부도 예측 모형 구축)

  • Jo, Nam-ok;Shin, Kyung-shik
    • Journal of Intelligence and Information Systems
    • /
    • v.22 no.2
    • /
    • pp.33-56
    • /
    • 2016
  • Many researchers have focused on developing bankruptcy prediction models using modeling techniques, such as statistical methods including multiple discriminant analysis (MDA) and logit analysis or artificial intelligence techniques containing artificial neural networks (ANN), decision trees, and support vector machines (SVM), to secure enhanced performance. Most of the bankruptcy prediction models in academic studies have used financial ratios as main input variables. The bankruptcy of firms is associated with firm's financial states and the external economic situation. However, the inclusion of qualitative information, such as the economic atmosphere, has not been actively discussed despite the fact that exploiting only financial ratios has some drawbacks. Accounting information, such as financial ratios, is based on past data, and it is usually determined one year before bankruptcy. Thus, a time lag exists between the point of closing financial statements and the point of credit evaluation. In addition, financial ratios do not contain environmental factors, such as external economic situations. Therefore, using only financial ratios may be insufficient in constructing a bankruptcy prediction model, because they essentially reflect past corporate internal accounting information while neglecting recent information. Thus, qualitative information must be added to the conventional bankruptcy prediction model to supplement accounting information. Due to the lack of an analytic mechanism for obtaining and processing qualitative information from various information sources, previous studies have only used qualitative information. However, recently, big data analytics, such as text mining techniques, have been drawing much attention in academia and industry, with an increasing amount of unstructured text data available on the web. A few previous studies have sought to adopt big data analytics in business prediction modeling. Nevertheless, the use of qualitative information on the web for business prediction modeling is still deemed to be in the primary stage, restricted to limited applications, such as stock prediction and movie revenue prediction applications. Thus, it is necessary to apply big data analytics techniques, such as text mining, to various business prediction problems, including credit risk evaluation. Analytic methods are required for processing qualitative information represented in unstructured text form due to the complexity of managing and processing unstructured text data. This study proposes a bankruptcy prediction model for Korean small- and medium-sized construction firms using both quantitative information, such as financial ratios, and qualitative information acquired from economic news articles. The performance of the proposed method depends on how well information types are transformed from qualitative into quantitative information that is suitable for incorporating into the bankruptcy prediction model. We employ big data analytics techniques, especially text mining, as a mechanism for processing qualitative information. The sentiment index is provided at the industry level by extracting from a large amount of text data to quantify the external economic atmosphere represented in the media. The proposed method involves keyword-based sentiment analysis using a domain-specific sentiment lexicon to extract sentiment from economic news articles. The generated sentiment lexicon is designed to represent sentiment for the construction business by considering the relationship between the occurring term and the actual situation with respect to the economic condition of the industry rather than the inherent semantics of the term. The experimental results proved that incorporating qualitative information based on big data analytics into the traditional bankruptcy prediction model based on accounting information is effective for enhancing the predictive performance. The sentiment variable extracted from economic news articles had an impact on corporate bankruptcy. In particular, a negative sentiment variable improved the accuracy of corporate bankruptcy prediction because the corporate bankruptcy of construction firms is sensitive to poor economic conditions. The bankruptcy prediction model using qualitative information based on big data analytics contributes to the field, in that it reflects not only relatively recent information but also environmental factors, such as external economic conditions.

Major concerns regarding food services based on news media reports during the COVID-19 outbreak using the topic modeling approach

  • Yoon, Hyejin;Kim, Taejin;Kim, Chang-Sik;Kim, Namgyu
    • Nutrition Research and Practice
    • /
    • v.15 no.sup1
    • /
    • pp.110-121
    • /
    • 2021
  • BACKGROUND/OBJECTIVES: Coronavirus disease 2019 (COVID-19) cases were first reported in December 2019, in China, and an increasing number of cases have since been detected all over the world. The purpose of this study was to collect significant news media reports on food services during the COVID-19 crisis and identify public communication and significant concerns regarding COVID-19 for suggesting future directions for the food industry and services. SUBJECTS/METHODS: News articles pertaining to food services were extracted from the home pages of major news media websites such as BBC, CNN, and Fox News between March 2020 and February 2021. The retrieved data was sorted and analyzed using Python software. RESULTS: The results of text analytics were presented in the format of the topic label and category for individual topics. The food and health category presented the effects of the COVID-19 pandemic on food and health, such as an increase in delivery services. The policy category was indicative of a change in government policy. The lifestyle change category addressed topics such as an increase in social media usage. CONCLUSIONS: This study is the first to analyze major news media (i.e., BBC, CNN, and Fox News) data related to food services in the context of the COVID-19 pandemic. Text analytics research on the food services domain revealed different categories such as food and health, policy, and lifestyle change. Therefore, this study contributes to the body of knowledge on food services research, through the use of text analytics to elicit findings from media sources.

Text Analytics for Classifying Types of Accident Occurrence Using Accident Report Documents (사고보고문서를 이용한 텍스트 기반 사고발생 유형 및 관계 분석)

  • Kim, Beom Soo;Chang, Seongrok;Suh, Yongyoon
    • Journal of the Korean Society of Safety
    • /
    • v.33 no.3
    • /
    • pp.58-64
    • /
    • 2018
  • Recently, a lot of accident report documents have accumulated in almost all of industries, including critical information of accidents. Accordingly, text data contained in accident report documents are considered useful information for understanding accident processes. However, there has been a lack of systematic approaches to analyzing accident report documents. In this respect, this paper aims at proposing text analytics approach to extracting critical information on accident processes. To be specific, major causes of the accident occurrence are classified based on text information contained in accident report documents by using both textmining and latent Dirichlet allocation (LDA) algorithms. The textmining algorithm is used to structure the document-term matrix and the LDA algorithm is applied to extract latent topics included in a lot of accident report documents. We extract ten topics of accidents as accident types and related keywords of accidents with respect to each accident type. The cause-and-effect diagram is then depicted as a tool for navigating processes of the accident occurrence by structuring causes extracted from LDA. Further, the trends of accidents are identified to explore patterns of accident occurrence in each of types. Three patterns of increasing to decreasing, decreasing to increasing, or only increasing are presented in the case of a chemical plant. The proposed approach helps safety managers systematically supervise the causes and processes of accidents through analysis of text information contained in accident report documents.

Customer Service Evaluation based on Online Text Analytics: Sentiment Analysis and Structural Topic Modeling

  • Park, KyungBae;Ha, Sung Ho
    • The Journal of Information Systems
    • /
    • v.26 no.4
    • /
    • pp.327-353
    • /
    • 2017
  • Purpose Social media such as social network services, online forums, and customer reviews have produced a plethora amount of information online. Yet, the information deluge has created both opportunities and challenges at the same time. This research particularly focuses on the challenges in order to discover and track the service defects over time derived by mining publicly available online customer reviews. Design/methodology/approach Synthesizing the streams of research from text analytics, we apply two stages of methods of sentiment analysis and structural topic model incorporating meta-information buried in review texts into the topics. Findings As a result, our study reveals that the research framework effectively leverages textual information to detect, prioritize, and categorize service defects by considering the moving trend over time. Our approach also highlights several implications theoretically and practically of how methods in computational linguistics can offer enriched insights by leveraging the online medium.

Investigating the Impact of Corporate Social Responsibility on Firm's Short- and Long-Term Performance with Online Text Analytics (온라인 텍스트 분석을 통해 추정한 기업의 사회적책임 성과가 기업의 단기적 장기적 성과에 미치는 영향 분석)

  • Lee, Heesung;Jin, Yunseon;Kwon, Ohbyung
    • Journal of Intelligence and Information Systems
    • /
    • v.22 no.2
    • /
    • pp.13-31
    • /
    • 2016
  • Despite expectations of short- or long-term positive effects of corporate social responsibility (CSR) on firm performance, the results of existing research into this relationship are inconsistent partly due to lack of clarity about subordinate CSR concepts. In this study, keywords related to CSR concepts are extracted from atypical sources, such as newspapers, using text mining techniques to examine the relationship between CSR and firm performance. The analysis is based on data from the New York Times, a major news publication, and Google Scholar. We used text analytics to process unstructured data collected from open online documents to explore the effects of CSR on short- and long-term firm performance. The results suggest that the CSR index computed using the proposed text - online media - analytics predicts long-term performance very well compared to short-term performance in the absence of any internal firm reports or CSR institute reports. Our study demonstrates the text analytics are useful for evaluating CSR performance with respect to convenience and cost effectiveness.

Investigations on Techniques and Applications of Text Analytics (텍스트 분석 기술 및 활용 동향)

  • Kim, Namgyu;Lee, Donghoon;Choi, Hochang;Wong, William Xiu Shun
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.42 no.2
    • /
    • pp.471-492
    • /
    • 2017
  • The demand and interest in big data analytics are increasing rapidly. The concepts around big data include not only existing structured data, but also various kinds of unstructured data such as text, images, videos, and logs. Among the various types of unstructured data, text data have gained particular attention because it is the most representative method to describe and deliver information. Text analysis is generally performed in the following order: document collection, parsing and filtering, structuring, frequency analysis, and similarity analysis. The results of the analysis can be displayed through word cloud, word network, topic modeling, document classification, and semantic analysis. Notably, there is an increasing demand to identify trending topics from the rapidly increasing text data generated through various social media. Thus, research on and applications of topic modeling have been actively carried out in various fields since topic modeling is able to extract the core topics from a huge amount of unstructured text documents and provide the document groups for each different topic. In this paper, we review the major techniques and research trends of text analysis. Further, we also introduce some cases of applications that solve the problems in various fields by using topic modeling.

Bigdata Analysis on Keyword by Generations through Text Mining: Focused on Board of Nate Pann in 10s, 20s, 30s (텍스트 마이닝을 활용한 세대별 키워드 빅데이터 분석: 네이트판 10대·20대·30대 게시판을 중심으로)

  • Jeong, Baek;Bae, Sungwon;Hwangbo, Yujeong
    • Proceedings of the Korean Society of Computer Information Conference
    • /
    • 2022.07a
    • /
    • pp.513-516
    • /
    • 2022
  • 본 논문에서는 텍스트 마이닝 기법을 이용하여 MZ 세대를 이해하는 키워드를 도출하고자 한다. MZ 세대의 비중이 높아지면서, MZ 세대를 분석하려고 하는 많은 연구들이 수행되고 있다. 이에 본 연구에서는 MZ 세대를 이해하기 위하여 네이트 판의 연령별 게시판 크롤링을 통해 빅데이터를 수집하였다. 그리고 텍스트 마이닝 기법을 활용하여 10대, 20대, 30대의 각각의 키워드를 도출할 수 있었다. 본 논문에서 도출된 키워드는 이는 MZ 세대를 이해하는데 중요한 키워드로 볼 수 있을 것이다. 향후 연구로는 MZ 세대와 기성 세대를 비교하기 위하여 추가 크롤링을 통해 세대 간 비교 연구를 수행하고자 한다.

  • PDF

A multi-channel CNN based online review helpfulness prediction model (Multi-channel CNN 기반 온라인 리뷰 유용성 예측 모델 개발에 관한 연구)

  • Li, Xinzhe;Yun, Hyorim;Li, Qinglong;Kim, Jaekyeong
    • Journal of Intelligence and Information Systems
    • /
    • v.28 no.2
    • /
    • pp.171-189
    • /
    • 2022
  • Online reviews play an essential role in the consumer's purchasing decision-making process, and thus, providing helpful and reliable reviews is essential to consumers. Previous online review helpfulness prediction studies mainly predicted review helpfulness based on the consistency of text and rating information of online reviews. However, there is a limitation in that representation capacity or review text and rating interaction. We propose a CNN-RHP model that effectively learns the interaction between review text and rating information to improve the limitations of previous studies. Multi-channel CNNs were applied to extract the semantic representation of the review text. We also converted rating into independent high-dimensional embedding vectors representing the same dimension as the text vector. The consistency between the review text and the rating information is learned based on element-wise operations between the review text and the star rating vector. To evaluate the performance of the proposed CNN-RHP model in this study, we used online reviews collected from Amazom.com. Experimental results show that the CNN-RHP model indicates excellent performance compared to several benchmark models. The results of this study can provide practical implications when providing services related to review helpfulness on online e-commerce platforms.